Skip to main content
Log in

A Fast Tunable 3D-Transmon Architecture for Superconducting Qubit-Based Hybrid Devices

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Superconducting qubits utilize the strong non-linearity of Josephson junctions. Control over the Josephson nonlinearity, either by a current bias or by the magnetic flux, can be a valuable resource that brings tunability in the hybrid system consisting of superconducting qubits. To enable such a control, here we incorporate a fast-flux line for a frequency tunable transmon qubit in 3D cavity architecture. We investigate the flux-dependent dynamic range, relaxation from unconfined states, and the bandwidth of the flux-line. Using time-domain measurements, we probe the transmon’s relaxation from higher energy levels after populating the cavity with \(\approx 2.1\times 10^4\) photons. For the device used in the experiment, we find a resurgence time corresponding to the recovery of coherence to be \(4.8~\upmu \hbox{s}\). We use a fast-flux line to tune the qubit frequency and demonstrate the swap of a single excitation between cavity and qubit mode. By measuring the deviation in the transferred population from the theoretical prediction, we estimate the bandwidth of the flux line to be \(\approx\) 100 MHz, limited by the parasitic effect in the design. These results suggest that the approach taken here to implement a fast-flux line in a 3D cavity could be helpful for the hybrid devices based on the superconducting qubit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M.A. Castellanos-Beltran, K.W. Lehnert, Appl. Phys. Lett. 91(8), 083509 (2007)

    Article  ADS  Google Scholar 

  2. T. Yamamoto, K. Inomata, M. Watanabe, K. Matsuba, T. Miyazaki, W.D. Oliver, Y. Nakamura, J.S. Tsai, Appl. Phys. Lett. 93(4), 042510 (2008)

    Article  ADS  Google Scholar 

  3. C. Macklin, K. O’Brien, D. Hover, M.E. Schwartz, V. Bolkhovsky, X. Zhang, W.D. Oliver, I. Siddiqi, Science 350(6258), 307–310 (2015)

    Article  ADS  Google Scholar 

  4. M.H. Devoret, J.M. Martinis, Quantum Inf. Process. 3(1–5), 163–203 (2004)

    Article  Google Scholar 

  5. A. Blais, J. Gambetta, A. Wallraff, D.I. Schuster, S.M. Girvin, M.H. Devoret, R.J. Schoelkopf, Phys. Rev. A 75(3), 032329 (2007)

    Article  ADS  Google Scholar 

  6. A.A. Clerk, K.W. Lehnert, P. Bertet, J.R. Petta, Y. Nakamura, Nat. Phys. 16(3), 257–267 (2020)

    Article  Google Scholar 

  7. I. Buluta, S. Ashhab, F. Nori, Rep. Prog. Phys. 74(10), 104401 (2011)

    Article  ADS  Google Scholar 

  8. Z.-L. Xiang, S. Ashhab, J.Q. You, F. Nori, Rev. Mod. Phys. 85(2), 623–653 (2013)

    Article  ADS  Google Scholar 

  9. E. Flurin, N. Roch, F. Mallet, M.H. Devoret, B. Huard, Phys. Rev. Lett. 109(18), 183901 (2012)

    Article  ADS  Google Scholar 

  10. B. Abdo, K. Sliwa, F. Schackert, N. Bergeal, M. Hatridge, L. Frunzio, A.D. Stone, M. Devoret, Phys. Rev. Lett. 110(17), 173902 (2013)

    Article  ADS  Google Scholar 

  11. Z. Leghtas, S. Touzard, I.M. Pop, A. Kou, B. Vlastakis, A. Petrenko, K.M. Sliwa, A. Narla, S. Shankar, M.J. Hatridge, M. Reagor, L. Frunzio, R.J. Schoelkopf, M. Mirrahimi, M.H. Devoret, Science 347(6224), 853–857 (2015)

    Article  ADS  Google Scholar 

  12. M.D. LaHaye, J. Suh, P.M. Echternach, K.C. Schwab, M.L. Roukes, Nature 459(7249), 960–964 (2009)

    Article  ADS  Google Scholar 

  13. A.D. O’Connell, M. Hofheinz, M. Ansmann, R.C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J.M. Martinis, A.N. Cleland, Nature 464(7289), 697–703 (2010)

    Article  ADS  Google Scholar 

  14. F. Lecocq, J.D. Teufel, J. Aumentado, R.W. Simmonds, Nat. Phys. 11(8), 635–639 (2015)

    Article  Google Scholar 

  15. J.-M. Pirkkalainen, S.U. Cho, J. Li, G.S. Paraoanu, P.J. Hakonen, M.A. Sillanpää, Nature 494(7436), 211–215 (2013)

    Article  ADS  Google Scholar 

  16. X. Zhu, S. Saito, A. Kemp, K. Kakuyanagi, S.-I. Karimoto, H. Nakano, W.J. Munro, Y. Tokura, M.S. Everitt, K. Nemoto, M. Kasu, N. Mizuochi, K. Semba, Nature 478(7368), 221–224 (2011)

    Article  ADS  Google Scholar 

  17. Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Dréau, J.-F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, P. Bertet, Phys. Rev. Lett. 107(22), 220501 (2011)

    Article  ADS  Google Scholar 

  18. M.V. Gustafsson, T. Aref, A.F. Kockum, M.K. Ekström, G. Johansson, P. Delsing, Science 346(6206), 207–211 (2014)

    Article  ADS  Google Scholar 

  19. R. Manenti, A.F. Kockum, A. Patterson, T. Behrle, J. Rahamim, G. Tancredi, F. Nori, P.J. Leek, Nat. Commun. 8(1), 975 (2017)

    Article  ADS  Google Scholar 

  20. A.N. Bolgar, J.I. Zotova, D.D. Kirichenko, I.S. Besedin, A.V. Semenov, R.S. Shaikhaidarov, O.V. Astafiev, Phys. Rev. Lett. 120(22), 223603 (2018)

    Article  ADS  Google Scholar 

  21. Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Usami, Y. Nakamura, Science 349(6246), 405–408 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. J. Viennot, X. Ma, K. Lehnert, Phys. Rev. Lett. 121(18), 183601 (2018)

    Article  ADS  Google Scholar 

  23. Y. Chu, P. Kharel, T. Yoon, L. Frunzio, P.T. Rakich, R.J. Schoelkopf, Nature 563(7733), 666 (2018)

    Article  ADS  Google Scholar 

  24. P. Arrangoiz-Arriola, E.A. Wollack, Z. Wang, M. Pechal, W. Jiang, T.P. McKenna, J.D. Witmer, R. Van Laer, A.H. Safavi-Naeini, Nature 571(7766), 537–540 (2019)

    Article  ADS  Google Scholar 

  25. R. Lescanne, L. Verney, Q. Ficheux, M.H. Devoret, B. Huard, M. Mirrahimi, Z. Leghtas, Phys. Rev. Appl. 11(1), 014030 (2019)

    Article  ADS  Google Scholar 

  26. L. Verney, R. Lescanne, M.H. Devoret, Z. Leghtas, M. Mirrahimi, Phys. Rev. Appl. 11(2), 024003 (2019)

    Article  ADS  Google Scholar 

  27. O. Gargiulo, S. Oleschko, J. Prat-Camps, M. Zanner, G. Kirchmair, Appl. Phys. Lett. 118(1), 012601 (2021)

    Article  ADS  Google Scholar 

  28. Y. Reshitnyk, M. Jerger, A. Fedorov, EPJ Quantum Technol 3(1), 1–6 (2016)

    Article  Google Scholar 

  29. M. Yuan, V. Singh, Y.M. Blanter, G.A. Steele, Nat. Commun. 6, 8491 (2015)

    Article  ADS  Google Scholar 

  30. A. Noguchi, R. Yamazaki, M. Ataka, H. Fujita, Y. Tabuchi, T. Ishikawa, K. Usami, Y. Nakamura, New J. Phys. 18(10), 103036 (2016)

    Article  ADS  Google Scholar 

  31. B. Gunupudi, S.R. Das, R. Navarathna, S.K. Sahu, S. Majumder, V. Singh, Phys. Rev. Appl. 11(2), 024067 (2019)

    Article  ADS  Google Scholar 

  32. G. Peterson, S. Kotler, F. Lecocq, K. Cicak, X. Jin, R. Simmonds, J. Aumentado, J. Teufel, Phys. Rev. Lett. 123(24), 247701 (2019)

    Article  ADS  Google Scholar 

  33. N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas, B. Vlastakis, Y. Liu, L. Frunzio, S.M. Girvin, L. Jiang, M. Mirrahimi, M.H. Devoret, R.J. Schoelkopf, Nature 536(7617), 441–445 (2016)

    Article  ADS  Google Scholar 

  34. R.W. Heeres, P. Reinhold, N. Ofek, L. Frunzio, L. Jiang, M.H. Devoret, R.J. Schoelkopf, Nat. Commun. 8(1), 94 (2017)

    Article  ADS  Google Scholar 

  35. H. Paik, D.I. Schuster, L.S. Bishop, G. Kirchmair, G. Catelani, A.P. Sears, B.R. Johnson, M.J. Reagor, L. Frunzio, L.I. Glazman, S.M. Girvin, M.H. Devoret, R.J. Schoelkopf, Phys. Rev. Lett. 107(24), 240501 (2011)

    Article  ADS  Google Scholar 

  36. K. Juliusson, S. Bernon, X. Zhou, V. Schmitt, H. Le Sueur, P. Bertet, D. Vion, M. Mirrahimi, P. Rouchon, D. Esteve, Phys. Rev. A 94(6), 063861 (2016)

    Article  ADS  Google Scholar 

  37. S.E. Nigg, H. Paik, B. Vlastakis, G. Kirchmair, S. Shankar, L. Frunzio, M.H. Devoret, R.J. Schoelkopf, S.M. Girvin, Phys. Rev. Lett. 108(24), 240502 (2012)

    Article  ADS  Google Scholar 

  38. C. Navau, J. Prat-Camps, O. Romero-Isart, J. Cirac, A. Sanchez, Phys. Rev. Lett. 112(25), 253901 (2014)

    Article  ADS  Google Scholar 

  39. P. Groszkowski, J. Koch, Quantum 5, 583 (2021)

    Article  Google Scholar 

  40. J. Koch, T.M. Yu, J. Gambetta, A.A. Houck, D.I. Schuster, J. Majer, A. Blais, M.H. Devoret, S.M. Girvin, R.J. Schoelkopf, Phys. Rev. A 76(4), 042319 (2007)

    Article  ADS  Google Scholar 

  41. R. Bianchetti, S. Filipp, M. Baur, J.M. Fink, M. Göppl, P.J. Leek, L. Steffen, A. Blais, A. Wallraff, Phys. Rev. A 80(4), 043840 (2009)

    Article  ADS  Google Scholar 

  42. J.R. Johansson, P.D. Nation, F. Nori, Comput. Phys. Commun. 183(8), 1760–1772 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the Air Force Office of Scientific Research under award number FA2386-20-1-4003. V.S. acknowledge the support received under the Young Scientist Research Award by the Department of Atomic Energy and support received under the Core Research Grant by the Department of Science and Technology (India). The authors acknowledge device fabrication facilities at CeNSE, IISc Bangalore, and central facilities at the Department of Physics funded by DST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vibhor Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3127 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumder, S., Bera, T., Suresh, R. et al. A Fast Tunable 3D-Transmon Architecture for Superconducting Qubit-Based Hybrid Devices. J Low Temp Phys 207, 210–219 (2022). https://doi.org/10.1007/s10909-022-02708-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02708-w

Keywords

Navigation