Skip to main content
Log in

Experimental Investigation of the Quantum Measurement Process Using Electrons in Superfluid Helium

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We report on mobility measurements of electron bubbles in superfluid helium-4. Electrons are introduced into the liquid from a plasma discharge in the vapor. For electrons with energy only a small amount above the minimum energy needed to enter the liquid, the wave function is partially transmitted into the liquid. We investigate the possibility that this partial transmission results in the formation of stable electron bubbles each of which contains only a fraction of the complete electron wave function. By measuring the mobility of these bubbles we can estimate their size. Our simulation of the mobility of these bubbles is consistent with the experimental data, and supports the idea that the interaction of the electron with the liquid helium does not result in a measurement that immediately determines that an electron is, or is not, in the bubble. Other possible explanations and their difficulties are also discussed in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

source S emits alpha particles into the helium vapor above the liquid. A voltage applied to grid G0 maintains a plasma in the region between G0 and the source S. The plasma is laterally confined by the structure made of nylon that is shown in part b. Electrons enter the liquid from the plasma and are able to pass into the drift region below G2 when a negative voltage pulse is applied to grid G1. After moving down the cell the electrons pass through the Frisch grid F and result in a pulse of current arriving at the collector C. The function of the different components in the cell and the measurement of the mobility of the electron bubbles is described in more detail in the text

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

source S is at a potential of − 1300 V. The dc voltages on G1 and H0 are − 310 V and − 400 V, respectively. To produce the required pulse of ions, a gate pulse of − 450 V is applied to G1

Fig. 16

source is in contact with the liquid. The drift field is 65 V cm−1

Fig. 17

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Notes

  1. A. Fine has given the name “Einstein’s Boxes” to this type of experiment.

  2. This assumes that the energy of the part of the wave function not in the cylinder is not affected by the position of the piston.

  3. Note that in previous papers by our group the background signal that we here name A was called #2, and the signal shown as the dotted line in Fig. 5 was called background #1. In the notation of the present paper #1 is the sum A + B and #2 is A. It is appropriate to make this change in notation because A is always present whereas B is not.

  4. Note that the signals plotted in Figs. 4, 5 and 6 are the current passing through the resistor connecting the collector to ground. This is the sum of the current coming from the ions that pass through the Frisch grid and reach the collector, added to the current induced by the field lines coming from ions that are approaching the Frisch grid and induce charge on the collector.

  5. Note the following interesting property of a Frisch grid. For a suitable choice of the geometry, the grid can be made to have a small leakage of field lines coming from approaching ions. But for this same geometry most of the field lines from the electrodes in the cell that provide the static drift field will pass through the grid. As a result most of the ions pass through the grid rather than being captured by the grid wires. For a discussion see [64]. For our grid we have calculated that ~ 88% of the static field lines ions pass through the grid. Thus assuming that the ions follow the field lines only ~ 12% of the ions are lost at the Frisch grid.

  6. This neglects the estimated 12% loss of ions at the Frisch grid.

  7. There is a short delay due to the capacitance between the collector and ground.

  8. For the data shown in Fig. 6 the field in the region between the Frisch grid and the collector is 87 V cm−1, and is larger than the field 65 V cm−1 in the main drift region. The time 0.51 ms takes account of this larger field.

References

  1. H. Putnam, Phil. Sci. 28, 234 (1961)

    Article  Google Scholar 

  2. H. Putnam, Phil. Sci. 31, 1 (1964)

    Article  Google Scholar 

  3. J.S. Bell, Phys. World 3, 33 (1990)

    Article  Google Scholar 

  4. H. Margenau, E.P. Wigner, Phil. Sci. 29, 292 (1962)

    Article  Google Scholar 

  5. E.P. Wigner, Am. J. Phys. 31, 6 (1963)

    Article  ADS  Google Scholar 

  6. H. Margenau, E.P. Wigner, Phil. Sci. 31, 7 (1964)

    Article  Google Scholar 

  7. L.N. Cooper, D. Van Vechten, Am. J. Phys. 37, 1212 (1969)

    Article  ADS  Google Scholar 

  8. L.N. Cooper, in The Physicist’s Conception of Nature¸ ed. by J. Mehra (Reidel, Dordrecht-Holland, 1973), p. 668

  9. L.N. Cooper, Proc. Am. Phil. Soc. 120, 37 (1976)

    ADS  Google Scholar 

  10. N.D. Mermin, Phys. Today 53(7), 11 (2000)

    Article  Google Scholar 

  11. L. de Broglie, J. Phys. Radium 8, 225 (1927)

    Article  Google Scholar 

  12. D. Bohm, Phys. Rev. 85, 166–180 (1952)

    Article  MathSciNet  ADS  Google Scholar 

  13. D. Bohm, Phys. Rev. 89, 458 (1953)

    Article  MathSciNet  ADS  Google Scholar 

  14. H. Everett, Rev. Mod. Phys. 29, 454 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  15. G.C. Ghirardi, A. Rimini, T. Weber, Phys. Rev. D 34, 470 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  16. H.-D. Zeh, Found. Phys. B1, 69 (1970)

    Article  ADS  Google Scholar 

  17. W.H. Zurek, Phys. Rev. D 24, 1516 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  18. W.H. Zurek, Phys. Rev. D 26, 1862 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  19. A.J. Leggett, Science 307, 871 (2005)

    Article  ADS  Google Scholar 

  20. M. Jammer, The current interpretation of wave mechanics (Wiley, New York, 1974), pp. 115–117

    Google Scholar 

  21. A. Fine, The Shaky Game: Einstein, Realism, and the Quantum Theory (University of Chicago Press, Chicago, 1996)

    Book  Google Scholar 

  22. L. de Broglie, J. Phys. Radium 20, 963 (1959)

    Article  MathSciNet  Google Scholar 

  23. L. de Broglie, The current interpretation of wave mechanics, pp. 28–29 (Elsevier, Amsterdam, 1964)

  24. J. Gea-Banacloche, Am. J. Phys. 70, 307 (2002)

    Article  ADS  Google Scholar 

  25. C.M. Bender, D.C. Brody, B.K. Meister, Proc. Roy. Soc A 461, 733 (2005)

    Article  ADS  Google Scholar 

  26. S.K. Baek, S.D. Yi, M. Kim, Phys. Rev. A 94, 052124 (2016)

    Article  ADS  Google Scholar 

  27. T. Hayashi, T. Fujisawa, H.D. Cheong, Y.H. Jeong, Y. Hirayama, Phys. Rev. Lett. 91, 226804 (2003)

    Article  ADS  Google Scholar 

  28. J.R. Petta, A.C. Johnson, J.M. Taylor, E.A. Laird, A. Yacoby, M.D. Lukin, C.M. Marcus, M.P. Hanson, A.C. Gossard, Science 309, 2180 (2005)

    Article  ADS  Google Scholar 

  29. W.T. Sommer, Phys. Rev. Lett. 12, 271 (1964)

    Article  ADS  Google Scholar 

  30. M.A. Woolf, G.W. Rayfield, Phys. Rev. Lett. 15, 235 (1965)

    Article  ADS  Google Scholar 

  31. W.B. Fowler, D.L. Dexter, Phys. Rev. 176, 337 (1968)

    Article  ADS  Google Scholar 

  32. C.C. Grimes, G. Adams, Phys. Rev. B 41, 6366 (1990)

    Article  ADS  Google Scholar 

  33. C.C. Grimes, G. Adams, Phys. Rev. B 45, 2305 (1992)

    Article  ADS  Google Scholar 

  34. G.M. Seidel, T.M. Ito, A. Ghosh and B. Sethumadhavan, Phys. Rev. C 89, 025808 (2014), see section IIA

  35. R. Barrera, G. Baym, Phys. Rev. A 6, 1558 (1972)

    Article  ADS  Google Scholar 

  36. J.P. Hernandez, M. Silver, Phys. Rev. 2, 1949 (1970)

    Article  ADS  Google Scholar 

  37. J.P. Hernandez, Rev. Mod. Phys. 63, 675 (1991)

    Article  ADS  Google Scholar 

  38. M. Rosenblit, J. Jortner, Phys. Rev. Lett. 75, 4079 (1995)

    Article  ADS  Google Scholar 

  39. M. Rosenblit, J. Jortner, J. Phys. Chem A 101, 751 (1997)

    Article  Google Scholar 

  40. J. Eloranta, V.A. Apkarian, J. Chem. Phys. 117, 10139 (2002)

    Article  ADS  Google Scholar 

  41. H.J. Maris, J. Low Temp. Phys. 120, 173 (2000)

    Article  ADS  Google Scholar 

  42. V. Elser, J. Low Temp. Phys. 123, 7 (2001)

    Article  ADS  Google Scholar 

  43. A.I.M. Rae, W.F. Vinen, J. Low Temp. Phys. 123, 1 (2001)

    Article  ADS  Google Scholar 

  44. R. Jackiw, C. Rebbi, J.R. Schriefer, J. Low Temp. Phys. 122, 587 (2001)

    Article  ADS  Google Scholar 

  45. W. Wei, Z. Xie, L.N. Cooper, H.J. Maris, J. Low Temp. Phys. 185, 313 (2016)

    Article  ADS  Google Scholar 

  46. B. Altschul, C. Rebbi, Phys. Rev. A 69, 032111 (2004)

    Article  ADS  Google Scholar 

  47. D. Mateo, M. Pi, M. Barranco, Phys. Rev. B 81, 174510 (2010)

    Article  ADS  Google Scholar 

  48. G. Greenstein, A.G. Zajonc, The quantum challenge (Jones and Bartlett, Boston, 2005)

    Google Scholar 

  49. D.I. Thwaites, Phys. Med. Biol. 25, 865 (1980)

    Article  Google Scholar 

  50. C.S.M. Doake, P.W.F. Gribbon, Phys. Lett. 30A, 251 (1969)

    ADS  Google Scholar 

  51. G.G. Ihas, T.M. Sanders, Phys. Rev. Lett. 27, 383 (1971)

    Article  ADS  Google Scholar 

  52. G.G. Ihas and T.M. Sanders, in Proceedings of the 13th International Conference on Low Temperature Physics, editors K.D. Timmerhaus, W.J. O’Sullivan and E.F. Hammel, (Plenum, New York, 1972), Vol. 1, p. 477

  53. G.G. Ihas, Ph.D. thesis, University of Michigan, (1971)

  54. V.L. Eden, P.V.E. McClintock, Phys. Lett. 102A, 197 (1984)

    Article  ADS  Google Scholar 

  55. V.L. Eden and P.V.E. McClintock in 75th Jubilee Conference on Liquid 4Helium, p. 194, edited by J.G.M. Armitage (World Scientific, Singapore, 1983)

  56. V.L. Eden, M. Phil. thesis, University of Lancaster, (1986)

  57. C.D.H. Williams, P.C. Hendry and P.V.E.McClintock, Proceedings of the 18th International Conference on Low Temperature Physics, Jap. J. Appl. Phys. 26, supplement 26–3, 105 (1987)

  58. W. Wei, Z. Xie, G.M. Seidel, H.J. Maris, J. Phys. Conf. Series 400, 012042 (2012)

    Article  Google Scholar 

  59. W. Wei, Z.-L. Xie, G.M. Seidel, H.J. Maris, J. Low Temp. Phys. 171, 178 (2013)

    Article  ADS  Google Scholar 

  60. W. Wei, Z.-L. Xie, Y. Yang, G.M. Seidel, H.J. Maris, J. Phys. Conf. Series 568, 012011 (2014)

    Article  Google Scholar 

  61. W. Wei, Z. Xie, L.N. Cooper, G.M. Seidel, H.J. Maris, J. Low Temp. Phys. 178, 78 (2015)

    Article  ADS  Google Scholar 

  62. Y. Xing, H.J. Maris, J. Low Temp. Phys. 201, 634 (2020)

    Article  ADS  Google Scholar 

  63. K.W. Schwarz, Phys. Rev. A 6, 837 (1972)

    Article  ADS  Google Scholar 

  64. O. Buneman, T.E. Cranshaw, J.A. Harvey, Can. J. Res. A27, 191 (1949)

    Article  Google Scholar 

  65. M.J. Druyvesteyn, F.M. Penning, Rev. Mod. Phys. 12, 88 (1940)

    Article  ADS  Google Scholar 

  66. D.E. Golden, H.W. Bandel, Phys. Rev. 138, A14 (1965)

    Article  ADS  Google Scholar 

  67. L.B. Lurio, T.A. Rabedeau, P.S. Pershan, I.F. Silvera, M. Deutsch, S.D. Kosowsky, B.M. Ocko, Phys. Rev. B 48, 9644 (1993)

    Article  ADS  Google Scholar 

  68. K. Penanen, M. Fokuto, R.K. Heilman, I.F. Silvera, P.S. Pershan, Phys. Rev. B 62, 9621 (2000)

    Article  ADS  Google Scholar 

  69. J.M. Marin, J. Boronat, J. Casulleras, Phys. Rev. B 71, 144518 (2005)

    Article  ADS  Google Scholar 

  70. L.D. Landau, I.M. Lifschitz, Quantum mechanics (Pergamon, Oxford, 1965), p. 79

    Google Scholar 

  71. M.W. Cole, Phys. Rev. A 1, 1838 (1970)

    Article  ADS  Google Scholar 

  72. E Cheng, M. W. Cole, and M. H. Cohen, Phys. Rev. B 50, 1136 (1994); Erratum Phys. Rev. B 50, 16134 (1994)

  73. F. Reif, L. Meyer, Phys. Rev. 119, 1164 (1960)

    Article  ADS  Google Scholar 

  74. R.M. Ostermeier, K.W. Schwarz, Phys. Rev. A 5, 2510 (1972)

    Article  ADS  Google Scholar 

  75. S. Sirisky, Y. Xing, G.M. Seidel, H.J. Maris, J. Low Temp. Phys. 201, 114 (2020)

    Article  ADS  Google Scholar 

  76. R.L. Williams, F.D. Stacey, Can. J. Phys. 35, 928 (1957)

    Article  ADS  Google Scholar 

  77. N. Ishida, J. Kikuchi, T. Doke, Jpn. J. Appl. Phys. 31, 1465 (1992)

    Article  ADS  Google Scholar 

  78. J. Classen, C.-K. Su, M. Mohazzab, H.J. Maris, Phys. Rev. 57, 3000 (1998)

    Article  Google Scholar 

  79. D. Konstantinov, H.J. Maris, Phys. Rev. Lett. 90, 025302 (2003)

    Article  ADS  Google Scholar 

  80. Z. Xie, W. Wei, Y. Yang, H.J. Maris, J. Exp. Theor. Phys. 146, 1258 (2014)

    Google Scholar 

  81. M.E. Muller, Ann. Math. Statist. 27, 569 (1956)

    Article  MathSciNet  Google Scholar 

  82. S. Redner, A guide to first-passage processes (Cambridge University Press, Cambridge, 2001)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We thank P. Leiderer for valuable comments on the manuscript, Z. Xie and Y. Yang for their contributions to the experiment, and S. Rezazadeh for the scanning electron microscope images of the grid structure. We thank many colleagues for discussion of the topics presented in this paper, especially M. Barranco, A. Ghosh, W. Guo, D. Jin, and G.M. Seidel. This work was supported in part by the National Science Foundation under Grant No. GR5260053 and by the Julian Schwinger Foundation grant JSF-15-05-0000

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Xing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

To determine the effect of leakage it is necessary to find how many field lines from a charge \(Q\) situated at a position \(\vec{r}\) will reach the collector plate. To reach the collector these lines have to pass through the Frisch grid. This problem could possibly be addressed using standard methods based on finite element techniques. However this approach is made very difficult because of the wide range of length scales that are involved. As shown in Fig. 8, the geometry of the field lines is influenced by the presence of conducting electrodes of dimensions of the order of centimeters (such as the homogenizer disks), and also by structures with features as small as 10 \(\mu\) (the wires making up the grid). This wide range of size requires a very complicated mesh.

The Monte Carlo method is as follows [81, 82]. Consider a charge located at some particular position in the cell. A “walker” starts at the position of the charge. The walker then undergoes a random walk within the volume occupied by the conducting electrodes. The random walk ends when the walker reaches an electrode. This procedure is then repeated for \(N_{walkers}\) walkers, and the number \(N_{collector}\) of these walkers that reach the collector, rather than some other electrode, is determined. The image charge on the collector is then given by

$$Q_{image} = - Q\,N_{collector} /N_{walkers}$$
(22)

This result as described so far would not provide a very useful algorithm because at first sight it would appear that to give an accurate result the steps of the random walk would have to be smaller than the smallest linear dimensions of any of the structures. If this were chosen to be 5 \(\mu\) then for a walker to migrate a distance of 1 cm would require of the order of 107 steps. However, it can be shown [81, 82] that the result of Eq. 22 still holds even if the step distance is varied during the random walk. The only requirement is that at each stage of the walk the step distance must be less than the distance \(\zeta\) from the current position of the walker to the nearest electrode. Thus to make the required number of steps a minimum, in each step the walker is moved to a point randomly chosen on the surface of a sphere of radius \(\zeta\) centered on the previous position. In our program the random walk is terminated when the walker reaches a position which is less than 0.1 µ from an electrode. The justification for terminating the random walk slightly outside an electrode is given in Sect. 7.2 of ref. [81]. Notice that the detailed path of the walker is not of interest.

To obtain the results shown in Fig. 9 we used \(2 \times 10^{6}\) walkers with initial positions distributed uniformly over the area of the slab of ions as shown in Fig. 7. This calculation was then repeated for a series of positions of the slab giving the results shown in Fig. 9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, Y., Sirisky, S., Wei, W. et al. Experimental Investigation of the Quantum Measurement Process Using Electrons in Superfluid Helium. J Low Temp Phys 207, 11–41 (2022). https://doi.org/10.1007/s10909-022-02697-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02697-w

Keywords

Navigation