Skip to main content
Log in

Polar Phase of \(^3\)He in Nematic Aerogel and Quartz Tuning Fork as Sensitive Detectors of Surface Boundary Conditions

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A new superfluid phase of \(^3\)He, a polar phase, which is known to stabilize in nematic aerogel, has already led to the observation of many new phenomena. One important condition for the existence of the polar phase is a \(^4\)He coverage, which removes solid paramagnetic \(^3\)He from the surface of the aerogel strands. We report here the results of NMR experiments with superfluid \(^3\)He in nematic aerogel demonstrating the influence of \(^4\)He coverage. Simultaneous measurements of resonance properties of a quartz tuning fork immersed in liquid \(^3\)He well correlate with the NMR data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. V.E. Asadchikov, RSh. Askhadullin, V.V. Volkov, V.V. Dmitriev, N.K. Kitaeva, P.N. Martynov, A.A. Osipov, A.A. Senin, A.A. Soldatov, D.I. Chekrygina, A.N. Yudin, JETP Lett. 101, 556 (2015)

    Article  ADS  Google Scholar 

  2. V.V. Dmitriev, L.A. Melnikovsky, A.A. Senin, A.A. Soldatov, A.N. Yudin, JETP Lett. 101, 808 (2015)

    Article  ADS  Google Scholar 

  3. K. Aoyama, R. Ikeda, Phys. Rev. B 73, 060504 (2006)

    Article  ADS  Google Scholar 

  4. V.V. Dmitriev, A.A. Senin, A.A. Soldatov, A.N. Yudin, Phys. Rev. Lett. 115, 165304 (2015)

    Article  ADS  Google Scholar 

  5. V.V. Dmitriev, A.A. Soldatov, A.N. Yudin, Phys. Rev. Lett. 120, 075301 (2018)

    Article  ADS  Google Scholar 

  6. V.V. Dmitriev, M.S. Kutuzov, A.A. Soldatov, A.N. Yudin, JETP Letters 110, 734 (2019)

    Article  ADS  Google Scholar 

  7. V.V. Dmitriev, A.A. Soldatov, A.N. Yudin, Jour. Exp. Theor. Phys. 131, 2 (2020)

    Article  ADS  Google Scholar 

  8. I.A. Fomin, J. Exp. Theor. Phys. 127, 933 (2018)

    Article  ADS  Google Scholar 

  9. V.B. Eltsov, T. Kamppinen, J. Rysti, G.E. Volovik, arXiv:1908.01645 (2019)

  10. A. Schuhl, S. Maegava, M.W. Meisel, M. Chapellier, Phys. Rev. B. 36, 6811 (1987)

    Article  ADS  Google Scholar 

  11. M.R. Freeman, R.C. Richardson, Phys. Rev. B 41, 11011 (1990)

    Article  ADS  Google Scholar 

  12. J.A. Sauls, Yu.M. Bunkov, E. Collin, H. Godfrin, P. Sharma, Phys. Rev. B 72, 024507 (2005)

    Article  ADS  Google Scholar 

  13. S.M. Tholen, J.M. Parpia, Phys. Rev. Lett. 67, 334 (1991)

    Article  ADS  Google Scholar 

  14. S.M. Tholen, J.M. Parpia, Phys. Rev. Lett. 68, 2810 (1992)

    Article  ADS  Google Scholar 

  15. S.M. Tholen, J.M. Parpia, Phys. Rev. B 47, 319 (1993)

    Article  ADS  Google Scholar 

  16. D. Kim, M. Nakagawa, O. Ishikawa, T. Hata, T. Kodama, H. Kojima, Phys. Rev. Lett. 71, 1581 (1993)

    Article  ADS  Google Scholar 

  17. S.C. Steel, J.P. Harrison, P. Zawadzki, A. Sachrajda, J. Low Temp. Phys. 95, 759 (1994)

    Article  ADS  Google Scholar 

  18. S. Murakawa, M. Wasai, K. Akiyama, Y. Wada, Y. Tamura, R. Nomura, Y. Okuda, Phys. Rev. Lett. 108, 025302 (2012)

    Article  ADS  Google Scholar 

  19. J.A. Sauls, P. Sharma, Phys. Rev. B 68, 224502 (2003)

    Article  ADS  Google Scholar 

  20. G. Baramidze, G. Kharadze, J. Low Temp. Phys. 135, 399 (2004)

    Article  ADS  Google Scholar 

  21. K. Aoyama, R. Ikeda, J. Phys. Conf. Ser. 150, 032005 (2009)

    Article  Google Scholar 

  22. A.M. Zimmerman, M.D. Nguyen, J.W. Scott, W.P. Halperin, Phys. Rev. Lett. 124, 025302 (2020)

    Article  ADS  Google Scholar 

  23. V.V. Dmitriev, M.S. Kutuzov, A.Y. Mikheev, V.N. Morozov, A.A. Soldatov, A.N. Yudin, Phys. Rev. B 102, 144507 (2020)

    Article  ADS  Google Scholar 

  24. P.J. Heikkinen, A. Casey, L.V. Levitin, X. Rojas, A. Vorontsov, P. Sharma, N. Zhelev, J.M. Parpia, J. Saunders, Nat. Commun. 12, 1574 (2021)

    Article  ADS  Google Scholar 

  25. D.O. Clubb, O.V.L. Buu, R.M. Bowley, R. Nyman, J.R. Owers-Bradley, J. Low Temp. Phys. 136, 1 (2004)

    Article  ADS  Google Scholar 

  26. R. Blaauwgeers, M. Blazkova, M. C̆lovec̆ko, V.B. Eltsov, R. de Graaf, J. Hosio, M. Krusius, D. Schmoranzer, W. Schoepe, L. Skrbek, P. Skyba, R.E. Solntsev, D.E. Zmeev, J. Low Temp. Phys. 146, 537 (2007)

  27. S. Autti, V.V. Dmitriev, J.T. Mäkinen, A.A. Soldatov, G.E. Volovik, A.N. Yudin, V.V. Zavjalov, V.B. Eltsov, Phys. Rev. Lett. 117, 255301 (2016)

    Article  ADS  Google Scholar 

  28. T.S. Riekki, J. Rysti, J.T. Mäkinen, A.P. Sebedash, V.B. Eltsov, J.T. Tuoriniemi, J. Low Temp. Phys. 196, 73 (2019)

    Article  ADS  Google Scholar 

  29. V.V. Dmitriev, A.A. Soldatov, A.N. Yudin, J. Low Temp. Phys. 187, 398 (2017)

    Article  ADS  Google Scholar 

  30. D.T. Sprague, T.M. Haard, J.B. Kycia, M.R. Rand, Y. Lee, P.J. Hamot, W.P. Halperin, Phys. Rev. Lett. 75, 661 (1995)

    Article  ADS  Google Scholar 

  31. D.I. Bradley, S.N. Fisher, A.M. Guenault, R.P. Haley, N. Mulders, G.R. Pickett, D. Potts, P. Skyba, J. Smith, V. Tsepelin, R.C.V. Whitehead, Phys. Rev. Lett. 105, 125303 (2010)

    Article  ADS  Google Scholar 

  32. V.V. Dmitriev, I.V. Kosarev, D.V. Ponarin, R. Scheibel, J. Low Temp. Phys. 113, 945 (1998)

    Article  ADS  Google Scholar 

  33. H. Franco, J. Bossy, H. Godfrin, Cryogenics 24, 477 (1984)

    Article  ADS  Google Scholar 

  34. A.I. Ahonen, M. Krusius, M.A. Paalanen, J. Low Temp. Phys. 25, 421 (1976)

    Article  ADS  Google Scholar 

  35. M.R. Rand, H.H. Hensley, J.B. Kycia, T.M. Haard, Y. Lee, P.J. Hamot, W.P. Halperin, Physica (Amsterdam) 194, 805 (1994)

    Article  ADS  Google Scholar 

  36. D. Vollhardt, P. Wölfle, The Superfluid Phases of Helium 3 (Taylor & Francis, London, 1990)

    MATH  Google Scholar 

  37. S. Autti, A.M. Guénault, A. Jennings, R.P. Haley, G.R. Pickett, R. Schanen, V. Tsepelin, J. Vonka, D.E. Zmeev, A.A. Soldatov, Phys. Rev. B 102, 064508 (2020)

    Article  ADS  Google Scholar 

  38. M.R. Freeman (1988), Ph.D. Thesis, Cornell University

Download references

Acknowledgements

The experiments on Setup 1 are carried out at the Kapitza Institute (Moscow) and was supported by the Russian Science Foundation (project no. 18-12-00384). The experimental work on Setup 2 is carried out in the Low Temperature Laboratory, which is a part of the OtaNano research infrastructure of Aalto University, and was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 694248) and by Academy of Finland (project 334470).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Dmitriev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitriev, V.V., Eltsov, V.B., Rysti, J. et al. Polar Phase of \(^3\)He in Nematic Aerogel and Quartz Tuning Fork as Sensitive Detectors of Surface Boundary Conditions. J Low Temp Phys 208, 3–16 (2022). https://doi.org/10.1007/s10909-022-02667-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02667-2

Keywords

Navigation