Skip to main content
Log in

Weakly Damped Vortex Flow on the Free Surface of a Normal Helium He-I Layer

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The buoyancy-driven thermogravitational Rayleigh–Benard convection (RBC) occurs in a 1–3 cm-deep layer of normal He-I in a wide experimental cell heated from above at temperatures below the liquid 4He density maximum T < Tm ≈ 2.183 K. It is established that the onset of RBC is accompanied by the appearance of a vortex flow on the free He-I surface. The interaction of these vortices between each other and with vertical vortex structures, which are formed in the bulk of the layer in the process of establishment of turbulent RBC, results in the appearance of large-scale vortices (vortex dipole), the dimensions of which were limited by the cell diameter d = 12.4 cm, on the surface. This corresponds to a transition from a 3D- to 2D-layer situation and the formation of an inverse energy cascade in the surface vortex system. As the temperature of the liquid at the cell bottom rises above Tm, the initial convective motion in the bulk of the non-uniformly heated He-I layer rapidly dies out; however, the vortex flow on the free surface of the liquid is maintained even without pumping energy from the bulk. The results of the long-term (up to ~ 800 s) studies on the evolution of the surface vortex system show that the decay of the total energy of the vortex system with time due to the nonlinear interaction between weakly damped large-scale vortices and their interaction with the cell boundaries can be described by the power law E ~ (1/τ)n with the exponent n≈ 1 ÷ 2 in different experiments. In the further observations (up to 2500 s), the appearance of small-scale vortices on a 2.5-cm-deep He-I surface layer was observed. Now, the decay of the total energy of the small-scale vortex system on the surface of a 3D-layer with time due to the viscous losses in the bulk could be described by the exponential law E ~ exp (− t/τ) with the characteristic time of τ ≈ 320 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D.M. Lee—Nobel Lecture. NobelPrize.org. Nobel Prize Outreach AB 2021. Mon. 18 Oct. 2021. https://www.nobelprize.org/prizes/physics/1996/lee/lecture

  2. J.D. Reppy, Topol. Phase Trans. New Dev. (2018). https://doi.org/10.1142/9789813271340_0015

    Article  Google Scholar 

  3. G. Agnolet, D.F. McQueeney, J.D. Reppy, Phys. Rev. B39, 8934–8958 (1989)

    Article  ADS  Google Scholar 

  4. J.J. Niemela, K.R. Sreenivasan, J. Low Temp. Phys. 143, 163–212 (2006)

    Article  ADS  Google Scholar 

  5. R.W. Walden, G. Ahlers, J. Fluid Mech. 109, 89–114 (1981)

    Article  ADS  Google Scholar 

  6. G. Ahlers, S. Grossmann, D. Lohse, Rev. Mod. Phys. 81(2), 503–537 (2009)

    Article  ADS  Google Scholar 

  7. A. Sameen, R. Verzicco, K.R. Sreenivasan, Phys. Scr. T132, 014053 (2008)

    Article  ADS  Google Scholar 

  8. Fatimata Sy, Pantxo Diribarne, Bernard Rousset, Mathieu Gibert, Mickael Bourgoin, Phys. Rev. Fluids 6, 064604 (2021)

    Article  ADS  Google Scholar 

  9. V. Musilova, T. Králík, M. La Mantia, M. Macek, P. Urban, L. Skrbek, J. Fluid Mech. 832, 721–744 (2017)

    Article  ADS  Google Scholar 

  10. I.A. Remizov, A.A. Levchenko, L.P. Mezhov-Deglin, J. Low Temp. Phys. 185, 324–338 (2016)

    Article  ADS  Google Scholar 

  11. L.P. Mezhov-Deglin, A. A. Levchenko, A.A. Pelmenev, I. A. Remizov, J. Exp. Theor. Phys. 129, 4, 591-606 (2019)

  12. A.A. Pel’menev, A.A. Levchenko, L.P. Mezhov-Deglin, JETP Lett. 110(8), 551–556 (2019)

    Article  ADS  Google Scholar 

  13. A.A. Pelmenev, A.A. Levchenko, L.P. Mezhov-Deglin, Low Temp. Phys. 46(2), 133–151 (2020)

    Article  ADS  Google Scholar 

  14. S.V. Filatov, A.A. Levchenko, L.P. Mezhov-Deglin, JETP Lett. 111(10), 549–561 (2020)

    Article  ADS  Google Scholar 

  15. R.J. Donnelly, C.F. Barenghi, J. Phys. Chem. Ref. Data 27, 1217 (1998)

    Article  ADS  Google Scholar 

  16. J.J. Niemela, R.J. Donnelly, J. Low, Temp. Phys. 98, 1–16 (1995)

    Article  ADS  Google Scholar 

  17. V.P. Peshkov, A.P. Borovikov, Sov. Phys. JETP 23(4), 559–565 (1966)

    ADS  Google Scholar 

  18. L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics, 2nd edn. (Pergamon Press, Oxford, New York, Toronto, Sydney, Paris, Frankfurt, 1987)

    Google Scholar 

  19. A.V. Getling, Rayleigh—Bénard Convection. Structures and Dynamics, Advanced Series in Nonlinear Dynamics, vol 11 (World Scientific, Singapore, 1998)

  20. P.-E. Roche, New J. Phys. 22(7), 073056 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  21. Q. Wang, S.-N. Xia, R. Yan, D.-J. Sun, Z.-H. Wan, Int. J. Heat Mass Transf. 128, 479–491 (2019)

    Article  Google Scholar 

  22. S. Weiss, X. He, G. Ahlers, E. Bodenschatz, O. Shishkina, J. Fluid Mech. 851, 374–390 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  23. Zhen-Hua. Wan, Ping Wei, Roberto Verzicco, Detlef Lohse, Guenter Ahlers, Richard J A M. Stevens, J. Fluid Mech. 881, 218–243 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  24. H. Yik, V. Valori, S. Weiss, Phys. Rev. Fluids 5, 103502 (2020)

    Article  ADS  Google Scholar 

  25. S. Moller, C. Resagk, C. Cierpka, Exp Fluids 62, 64 (2021)

    Article  Google Scholar 

  26. G. Falkovich, G. Boffetta, M. Shats, A. S. Lanotte, Introduction to focus issue: two-dimensional turbulence. Physics of Fluids 29, 110901 (2017)

  27. S. Filatov, A. Levchenko, A. Likhter, L. Mezhov-Deglin, Mater. Lett. 254, 444–447 (2019)

    Article  Google Scholar 

  28. W. Thielicke, E.J. Stamhuis, PIVlab—Towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Res. Softw. 2(1), 30 (2014). https://doi.org/10.5334/jors.bl

    Article  Google Scholar 

  29. S.V. Filatov, A.A. Levchenko, M.Y. Brazhnikov, L.P. Mezhov-Deglin, Instrum. Exp. Tech. 61, 757–760 (2018)

    Article  Google Scholar 

  30. N. Francois, H. Xia, H. Punzmann, M. Shats, Phys. Rev. Lett. 110, 194501 (2013)

    Article  ADS  Google Scholar 

  31. V.M. Parfenyev, S.V. Filatov, M.Yu. Brazhnikov, S.S. Vergeles, A.A. Levchenko, Phys. Rev. Fluids 4, 114701 (2019)

    Article  ADS  Google Scholar 

  32. E. Large, C.D. Andereck, Phys. Fluids 26, 094101 (2014)

    Article  ADS  Google Scholar 

  33. A.N. Ermolenko, PMTF 48(2), 27 (2007)

    MathSciNet  Google Scholar 

  34. Qi. Wang, Philipp Reiter, Detlef Lohse, Olga Shishkina, Phys. Rev. Fluids 6, 063502 (2021)

    Article  ADS  Google Scholar 

  35. P. Urban, D. Schmoranzer, P. Hanzelka, K.R. Sreenivasan, L. Skrbek, PNAS 110(20), 8036–8039 (2013)

    Article  ADS  Google Scholar 

  36. J. Niemela, PNAS 110(20), 7969–7970 (2013)

    Article  ADS  Google Scholar 

  37. P. Urban, P. Hanzelka, I. Vlček, D. Schmoranzer, L. Skrbek, Low Temp. Phys. 44, 1001 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was carried out as part of the state assignments of the Osipyan Institute of Solid State Physics RAS. The authors thank A.V. Lokhov for the technical assistance and V.V. Lebedev and I.V. Kolokolov for their interest and discussion of the experimental results. We are grateful to the anonymous referees for their attention and, according to their remarks, have decided to supplement the list of references with three articles [35,36,37] devoted to the discussion of the features of convective heat transfer in condensed helium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Pelmenev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

It is a great honor for us to contribute our paper to the JLTP issue dedicated to the distinguished scientists Prof. D.M. Lee and J.D. Reppy on the occasion of their 90th birthdays. The most famous works of both experimenters are devoted to the study and understanding of the properties of superfluid 3He and 4He: a phase transition from a normal to a superfluid state in 3He [1], a vortex flow of superfluid He-II, including a flow under microgravity conditions [2].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelmenev, A., Levchenko, A. & Mezhov-Deglin, L. Weakly Damped Vortex Flow on the Free Surface of a Normal Helium He-I Layer. J Low Temp Phys 205, 200–217 (2021). https://doi.org/10.1007/s10909-021-02632-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02632-5

Keywords

Navigation