Skip to main content
Log in

Excess Conductivity Analysis of Y-Ba-Cu–O Superconductor Phases

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The excess conductivity analysis of the conductivity data of YBa2Cu3O7-δ, YBa2Cu4O8, and Y2Ba4Cu7O15-δ is carried out for the studies of intrinsic parameters of superconductivity in these compounds to determine the superiority among their homologous phases. The YBa2Cu3O7-δ sample prepared by using CuO has shown oxygen-deficient chains that have given inferior values of coherence length along the c-axis, interlayer coupling, and Fermi velocity of the carriers in comparison with the YBa2Cu3O7-δ sample prepared by Cu2(CN)2 as starting compounds. The YBa2Cu3O7-δ sample synthesized by CuO is, however, superior in their magnetic characteristics in comparison with Cu2(CN)2 synthesized sample, i.e., have higher values of Bc(0) and Bc1. The superior magnetic characteristics of YBa2Cu3O7-δ sample prepared by CuO arise due to higher density of oxygen defects which act as microscopic pinning centers. The normal pressure synthesis of YBa2Cu4O8 sample has been made possible by using Cu2(CN)2 as a starting copper compound. YBa2Cu4O8 sample is also superior to YBa2Cu3O7-δ samples as far as their coherence length along the c-axis and the Fermi velocity of carriers is concerned, but their magnetic characteristics are inferior due to lower population of defects in double Cu2O chains. The Y2Ba4Cu7O15-δ whose unit cell consists of alternating YBa2Cu3O7-δ and YBa2Cu4O8 unit cells shows very high coherence length, penetration depth, and Fermi velocity when compared to the other two phases. However, its magnetic characteristics are inferior. Finally, we have concluded that the superiority trend among these homologous phases for device fabrication is YBa2Cu3O7-δ, > YBa2Cu4O8, > Y2Ba4Cu7O15-δ, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. C.W. Chu, L.Z. Deng, B. Lv, Hole-doped cuprate high temperature superconductors. Physica C 51, 4290 (2015)

    Google Scholar 

  2. G. Xiao, M.Z. Cieplak, A. Gavrin, F.H. Streitz, A. Bakhshai, C.L. Chien, High-temperature superconductivity in tetragonal perovskite structures: Is oxygen-vacancy order important? Phys. Rev. Lett. 60, 1446 (1988)

    Article  ADS  Google Scholar 

  3. K. Tominoto, I. Terasaki, A.I. Rykov, T. Mimura, S. Tajima, Impurity effects on the superconducting coherence length in Zn- or Ni-doped YBa2Cu3O6.9 single crystals. Phys Rev B 60, 114 (1999)

    Article  ADS  Google Scholar 

  4. Y. Fukuzumi, K. Mizuhashi, K. Takenaka, S. Uchida, Universal superconductor-insulator transition and Tc depression in Zn-Substituted high- Tc cuprates in the underdoped regime. Phys. Rev. Lett. 76, 684 (1996)

    Article  ADS  Google Scholar 

  5. E.W. Hudson, K.M. Lang, V. Madhavan, S.H. Pan, H. Eisak, S. Uchida, J.C. Davis, Interplay of magnetism and high-Tc superconductivity at individual Ni impurity atoms in Bi2Sr2CaCu2O8+δ. Nature 41, 920–924 (2001)

    Article  ADS  Google Scholar 

  6. D.M. Pooke, R.G. Buckely, M.R. Prestland, J.L. Tallon, Bulk superconducting Y2Ba4Cu7O15−δ and YBa2Cu4O8 prepared in oxygen at 1 atm. Phys Rev B 41, 6616 (1990)

    Article  ADS  Google Scholar 

  7. T. Krekels, G. Van Tendeloo, S. Amelinckx, J. Karpinski, E. Karpinski, E. Kaldis, S. Rusiecki, Structural considerations on polytypoids. Solid State Commun 79, 607–614 (1991)

    Article  ADS  Google Scholar 

  8. J.S. Teng-Ming Chen, H.S.K. Liu, Synthesis of a 90 K Y2Ba4Cu7O15−x superconductor under ambient pressure by triethylammoniumoxalate co-precipitation. Physica C 215, 435–438 (1993)

    Article  ADS  Google Scholar 

  9. N.A. Khan, N. Baber, M. Zafar Iqbal, Simple method for direct synthesis of YBa2Cu4O8 at atmospheric oxygen pressure. Appl Phys Lett 63, 257 (1993)

    Article  ADS  Google Scholar 

  10. M.K. Wu, J.R. Ashburn, C.T. Torng, P.H. Hor, R.L. Meng, L. Cao, Z.J. Huan, Y.Q. Wang, C.W. Chu, Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett 58, 908 (1987)

    Article  ADS  Google Scholar 

  11. J. Karpinski, E. Kaldis, E. Jielk, S. Ruisecki, B. Bucher, Bulk synthesis of the 81-K superconductor YBa2Cu4O8 at high oxygen pressure. Nature 336, 660–662 (1988)

    Article  ADS  Google Scholar 

  12. R.J. Cava, J.J. Krajewski, W.F. Peck Jr., B. BatLogg, L.W. Rupp Jr., R.M. Fleming, A.C.W.P. James, P. Marsh, Synthesis of bulk superconducting YBa2Cu4O8 at one atmosphere oxygen pressure. Nature 334, 328–330 (1989)

    Article  ADS  Google Scholar 

  13. N. Loudhaief, M. Ben Salem, M. Zouaoui, Intrinsic Properties of Nano-CdS-Added YBa2Cu3Oy and (Bi, Pb)2Sr2Ca2Cu3Oδ Superconductors. J Low Temp Phys 203, 11–27 (2021)

    Article  ADS  Google Scholar 

  14. M.A. Rahman, M.Z. Rahaman, M.N. Samsuddoha, A review on cuprate based superconducting materials including characteristics and applications. Am J Phys Appl. 3(2), 39–56 (2015)

    Google Scholar 

  15. A. Stangl, A. Palau, G. Deutscher, X. Obradors, T. Puig, Ultra-high critical current densities of superconducting YBa2Cu3O7-δ thin films in the overdoped state. Sci. Rep. 11, 8176 (2021)

    Article  ADS  Google Scholar 

  16. B. Shabbir, A. Ullah, N. Hassan, M. Irfan, N.A. Khan, Suppression of superconductivity due to enhanced Co doping in Cu0.5Tl0.5Ba2Ca2Ca2Cu3−yCo yO10−δ superconductors. J Supercond Nov Magn. 24, 1521–1526 (2011)

    Article  Google Scholar 

  17. A. Raza, S.H. Safeer, N.A. Khan, The role of mass of doped atoms in the superconductivity of Cu0.5Tl0.5Ba2Ca2Cu3O10−d and Cu0.5Tl0.5Ba2Ca2Cu1.5M1.5O10−d (M = Cd, Zn, and Ni). J Supercond Nov Magn 30, 1153–1160 (2017)

    Article  Google Scholar 

  18. E. Kandyel, M.A. Sekkina, M.A.T. Dawoud, M.Y. Bohnam, Effect of 3d metal ion doping on the structure and superconductivity of (Tl0.5Pb0.5)Sr2CaCu2O7. Solid State Commun 135, 214–219 (2005)

    Article  ADS  Google Scholar 

  19. N.A. Khan, N. Hassan, S. Nawaz, B. Shabbir, S. Khan, A.A. Rizvi, Effect of Sn substitution on the para-conductivity of polycrystalline Cu0.5Tl0.5Ba2Ca2Cu3−y SnyO10−δ superconductors. J Appl Phys 107, 083910 (2010)

    Article  ADS  Google Scholar 

  20. M.U. Muzaffar, S.H. Safeer, N.A. Khan, A.A. Khurram, Modified synthesis route to achieve Sr substituted Cu0.5Tl0.5–1234 superconductor phase. Mater Chem Phys 181, 384–390 (2016)

    Article  Google Scholar 

  21. M. Kaur, R. Srinibasan, G.K. Mehta, D. Kanjilal, R. Pinto, S.B. Ogale, S. Mohan, V. Ganesan, Effect of disorder on the exponent in the coherence region in high temperature superconductors. Physica C 443, 61–68 (2006)

    Article  ADS  Google Scholar 

  22. M.M.E. Barakat, A.I. Aboualy, R. Awad, N.S. Aly, S. Ibrahim, Excess conductivity analysis for superconducting phase. Int J Modern Phys B 30, 1650115 (2016)

    Article  ADS  Google Scholar 

  23. N.A. Khan, S.H. Safeer, M. Rahim, M. Nasir Khan, N. Hassan, Excess conductivity analysis of Cu0.5Tl0.5Ba2Can-1CunO2n+4-δ(n = 2, 3, 4) thin films. J Supercond Nov Magn 30, 1493–1498 (2017)

    Article  Google Scholar 

  24. N.A. Khan, S.H. Safeer, M.N. Khan, M. Rahim, N. Hassan, Excess conductivity analyses of (Cu0.5Tl0.5)Ba2Ca3Cu4O12−δ thin film samples synthesized at different temperatures and post-annealed in flowing nitrogen atmosphere. J Mater Sci: Mater Electron 29, 2209–2215 (2018)

    Google Scholar 

  25. S.H. Safeer, A. Riaz, N.A. Khan, Study of carrier transfer mechanism when substituting strontium at barium sites in CuTl-1223 superconducting phase. J ElecMater 50, 4034–4040 (2021)

    ADS  Google Scholar 

  26. K. Naseem, N.A. Khan, S.H. Safeer, Effect of magnesium doping to reduce the charge reservoir layer in Cu0.5Tl0.5(Ba2−xMgx)Ca2Cu3Oy (x = 0, 0.15, 0.25, 0.35) superconductors. J ElecMater 50, 2164–2170 (2021)

    ADS  Google Scholar 

  27. Lawrence WE, Doniach S (1971) Proceedings of the Twelfth International Conference on Low Temperature Physics, edited by Eizo Kanda (Keigaku, Tokyo) p. 361.

  28. N. Hassan, B. Shabbir, N.A. Khan, Excess-conductivity analysis of Mg- and Be-doped polycrystalline Cu0.5Tl0.5Ba2Ca1.5M1.5Cu4O12−d(M=0, Be, Mg) superconductors. J Appl Phys 105, 083926 (2009)

    Article  ADS  Google Scholar 

  29. A.I. Abu Aly, I.H. Ibrahim, R.A. Awad, A. El-Harizy, Stabilization of Tl-1223 phase by arsenic substitution. J Supercond Nov Magn 23, 1325–1332 (2010)

    Article  Google Scholar 

  30. M.A. Sekkina, K.M. Elsabawy, Sr-doping for promoted high-Tc BPSCCO superconductors. Physica C. 377, 254–259 (2002)

    Article  ADS  Google Scholar 

  31. M. Irfan, N. Hassan, S.A. Manzoor, B. Shabbir, N.A. Khan, Enhanced three-dimensional excess conductivity in Be doped superconductors. J Appl Phys 106, 113913 (2009)

    Article  ADS  Google Scholar 

  32. B. Shabbir, X. Wang, S. Ghorbani, C. Shekhar, S. Dou, O.N. Srivastava, Hydrostatic pressure: a very effective approach to significantly enhance critical current density in granular iron pnictide superconductors. Sci. Rep. 5, 8213 (2015)

    Article  ADS  Google Scholar 

  33. S. Arumugam, M. Krishnan, K. Ishigaki, J. Gouchi, R. Pervin, G.K. Selvan, P.M. Shirage, Y. Uwatoko, Enhancement of superconducting properties and flux pinning mechanism on Cr0.0005NbSe2 single crystal under Hydrostatic pressure. Sci Rep 9, 347 (2019)

    Article  ADS  Google Scholar 

  34. B. Shabbir, X. Wang, Y. Ma, S.X. Dou, S.S. Yan, L.M. Mei, Study of flux pinning mechanism under hydrostatic pressure in optimally doped (Ba, K)Fe2As2 single crystals. Sci Rep 6, 23044 (2016)

    Article  ADS  Google Scholar 

  35. B. Shabbir, X. Wang, S.R. Ghorbani, A.F. Wang, S. Dou, X.H. Chen, Giant enhancement in critical current density up to a hundredfold in superconducting As single crystals under hydrostatic pressure. Sci Rep 5, 10606 (2015)

    Article  ADS  Google Scholar 

  36. A. Sedky, A. Salah, Excess conductivity, diamagnetic transition and FTIR spectra of Ca substituted by La in (Bi, Pb):2212 superconducting system. J Low Temp Phys 201, 294–310 (2020)

    Article  ADS  Google Scholar 

  37. B. Shabbir, X.L. Wang, S.R. Ghorbani, S.X. Dou, F. Xiang, Hydrostatic pressure induced transition from δTC to δℓ pinning mechanism MgB2 in Supercond. Sci Technol 28, 055001 (2015)

    ADS  Google Scholar 

  38. N.A. Khan, S.H. Safeer, A. Raza, M. NasirKhan, Flux pinning characteristics and irreversibility field of Cu0.5Tl0.5Ba2Ca3Cu4O12−δ thin films. J Supercond Nov Magn 32, 1163–1170 (2019)

    Article  Google Scholar 

  39. B. Shabbir, H. Huang, C. Yao, Y. Ma, S. Dou, T.H. Johansen, H. Hosono, X. Wang, Evidence for superior current carrying capability of iron pnictide tapes under hydrostatic pressure. Phys Rev Mater 1, 044805 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Hamza Safeer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhtar, S.F., Khan, N.A. & Safeer, S.H. Excess Conductivity Analysis of Y-Ba-Cu–O Superconductor Phases. J Low Temp Phys 206, 106–119 (2022). https://doi.org/10.1007/s10909-021-02629-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02629-0

Keywords

Navigation