Skip to main content
Log in

Dynamics and Decoherence of Polaron in Monolayer Graphene Under Magnetic Field

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In the present paper, we theoretically study the dynamics and decoherence of polaron in monolayer graphene. We obtain the energies of ground and first excited states by using linear combination operator and applying a variational method of Pekar. Then, we evaluate some polaron's properties such as the effective mass, the mobility, optical absorption coefficient, lifetime and decoherence time. We show that for strong magnetic fields, the effective mass of the polaron increases as the magnetic field strength increases but, decreases with increasing Debye cutoff wave number (DCOW). We have low mobility of the polaron, and low optical absorption coefficient leading to a strong decoherence effect of the polaron in graphene. It is observed that magnetic field and DCOW have opposite effect in the effective mass of polaron in graphene. Our results show that the magnetic field improves the graphene's electronics and optical properties and also controls the quantum properties of graphene. Some of our results confirm the experimental results. Thus, the results found in our work with polaron mobility are in agreement with the experience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  2. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902–907 (2008)

    Article  ADS  Google Scholar 

  3. R.S. Deacon, K.-C. Chuang, R.J. Nicholas, K.S. Novoselov, A.K. Geim, Phys. Rev. B 76, 081406R (2007)

    Article  ADS  Google Scholar 

  4. S.V. Kryuchkov, E.I. Kukhar, J. Mod. Phys. 3, 994 (2012)

    Article  Google Scholar 

  5. M. Calandra, F. Mauri, Phys. Rev. B 76, 205411 (2007)

    Article  ADS  Google Scholar 

  6. M. Lazzeri, S. Piscanec, F. Mauri, A.C. Ferrari, J. Robertson, Phys. Rev. B 73, 155426 (2006)

    Article  ADS  Google Scholar 

  7. B.S. Kandemir, D. Akay, Superlattices Microstruct. 117, 18–24 (2019)

    Google Scholar 

  8. B.S. Kandemir, D. Akay, Philos. Mag. 97, 2225–2235 (2017)

    Article  ADS  Google Scholar 

  9. C. Kenfack-Sadem, M.F.C. Fobasso, F. Amo-Mensah, E. Baloitcha, A. Fotue, L.C. Fai, Phys. E. 122, 114154 (2020)

    Article  Google Scholar 

  10. L.A. Ribeiro, G.G. da Silva, R.T. de Sousa, A.L. de Almeida Fonseca, W.F. da Cunha, G.M. Silva, Sci. Rep. 8, 1–8 (2018)

    ADS  Google Scholar 

  11. G.G. Silva, W.F. da Cunha, R.T. de Sousa Jr, A.L.A. Fonseca, L.A.R. Júnior, G.M. Silva, Phys. Chem. Chem. Phys. 20, 16712–16718 (2018)

    Article  Google Scholar 

  12. J.F. Teixeira, P.H. de Oliveira Neto, W.F. da Cunha, L.A. Ribeiro, G.M. Silva, J. Mol. Model. 23, 293 (2017)

    Article  Google Scholar 

  13. A.V.P. Abreu, J.F. Teixeira, A.L.D.A. Fonseca, R. Gargano, G.M. Silva, L.A. Ribeiro, J. Phys. Chem. A 120, 4901–4906 (2016)

    Article  Google Scholar 

  14. L.A. Ribeiro Jr., W.F. da Cunha, A.L.D.A. Fonseca, G.M. Silva, S. Stafström, J. Phys. Chem. Lett. 6, 510–514 (2015)

    Article  Google Scholar 

  15. W.F. da Cunha, L.A. Ribeiro Jr., A.L. de Almeida Fonseca, R. Gargano, G.M. Silva, Carbon 91, 171–177 (2015)

    Article  Google Scholar 

  16. B. Kandemir, A. Mogulkoc, Solid State Commun. 177, 80 (2014)

    Article  ADS  Google Scholar 

  17. A. Mogulkoc, M. Modarresi, B.S. Kandemir, Eur. Phys. J. B 88, 1 (2015)

    Article  Google Scholar 

  18. A. Mogulkoc et al., Physica B 446, 85 (2014)

    Article  ADS  Google Scholar 

  19. M. Modarresi et al., Physica E 66, 303 (2015)

    Article  ADS  Google Scholar 

  20. R. Khordad, H.R. Rastegar Sedehi, Indian J. Phys. 92, 979 (2018)

    Article  ADS  Google Scholar 

  21. E. Cappelluti, L. Pietronero, Phys. Status Solidi B 242, 133 (2005)

    Article  ADS  Google Scholar 

  22. R.R. Hudgins, P. Durourd, J.M. Tenenbaum, M.F. Jarrold, Phys. Rev. Lett. 78, 4213 (1997)

    Article  ADS  Google Scholar 

  23. J. Bonca, S.A. Trugman, Phys. Rev. B 64, 094507 (2001)

    Article  ADS  Google Scholar 

  24. J.T. Devreese, S.N. Klimin, V.M. Fomin, F. Brosens, Solid State Commun. 114, 305 (2000)

    Article  ADS  Google Scholar 

  25. E.P. Pokatilov, V.M. Fomin, S.N. Balaban, S.N. Klimin, L.C. Fai, J.T. Devreese, Superlattices Microstuct. 23, 331 (1998)

    Article  ADS  Google Scholar 

  26. E.P. Pokatilov, V.M. Fomin, J.T. Devreese, S.N. Balaban, S.N. Klimin, J. Phys. Condens. Matter 11, 9033 (1999)

    Article  ADS  Google Scholar 

  27. L. D. Landau, Phys. Z. Phys. Z. Sowjet. 3, 664 (1933)

    Google Scholar 

  28. S.S. Fathpour, Z. Mi, P. Bhattacharya, Appl. Phys. Lett. 38, 2103 (2005)

    Google Scholar 

  29. C. Santori, M. Pelton, G.S. Solomon, Y. Dale, Y. Yamamoto, Phys. Rev. Lett. 86, 1502 (2005)

    Article  ADS  Google Scholar 

  30. F.M. Peeters, J.T. Devreese, Phys. Rev. B 32, 3515 (1985)

    Article  ADS  Google Scholar 

  31. J.H. Hou, X.X. Liang, Chin. Phys. 16, 3059 (2007)

    Article  Google Scholar 

  32. M. Wang et al., Int. J. Smart Nano Mater. 5, 123 (2014)

    Article  Google Scholar 

  33. Q. Chen, W. Wang, F.M. Peeters, J. Appl. Phys. 123, 214303 (2018)

    Article  ADS  Google Scholar 

  34. F.M. Peeters, X.G. Wu, J.T. Devreese, Phys. Rev. B 33, 4338 (1986)

    Article  ADS  Google Scholar 

  35. Z.Q. Li, E.A. Henriksen, Z. Jiang, Z. Halo, M.C. Martin, P. Kim, H.L. Stormer, D.N. Basov, Phys. Rev. Lett. 102, 037403 (2009)

    Article  ADS  Google Scholar 

  36. Z.W. Wang, L. Liu, Z.Q. Li, Appl. Phys. Lett. 106, 101601 (2015)

    Article  ADS  Google Scholar 

  37. Z. Hua, D.Y. Zhao, J.L. Xiao, Low Temp. Phys. 182, 162 (2016)

    Article  ADS  Google Scholar 

  38. M. Tahir, K. Sabeeh, Phys. Rev. B. 77, 195421 (2008)

    Article  ADS  Google Scholar 

  39. X.Z. Yan, C.S. Ting, New J. Phys. 11, 093026 (2009)

    Article  ADS  Google Scholar 

  40. T. Shen, Y.Q. Wu, M.A. Capano, L.P. Rokhinson, L.W. Engel, P.D. Ye, Appl. Phys. Lett. 93, 122102 (2008)

    Article  ADS  Google Scholar 

  41. J. Jobst, D. Waldmann, F. Speck, R. Hirner, D.K. Maude, T. Seyller, H.B. Weber, Phys. Rev. B 81, 195434 (2010)

    Article  ADS  Google Scholar 

  42. S.G. Sharapov, V.P. Gusynin, Phys. Rev. B. 71, 125124 (2005)

    Article  ADS  Google Scholar 

  43. K.Y. Bliokh, Phys. Lett. A 344, 127 (2005)

    Article  ADS  Google Scholar 

  44. V.P. Gusynin, S.G. Sharapov, J.P. Carbotte, J. Phys. Condensed Matter 19, 026222 (2007)

    Article  ADS  Google Scholar 

  45. N.M.R. Peres, F. Guinea, A.H.C. Neto, Phys. Rev. B 73, 125411 (2006)

    Article  ADS  Google Scholar 

  46. V.P. Gusynin, S.G. Sharapov, Phys. Rev. B 73, 245411 (2006)

    Article  ADS  Google Scholar 

  47. M. Grujic, M. Zarenia, A. Chaves, M. Tadic, G.A. Farias, F.M. Peeters, Phys. Rev. B 84, 205441 (2011)

    Article  ADS  Google Scholar 

  48. C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, J. Phys. Chem. B 108, 19912 (2004)

    Article  Google Scholar 

  49. H. Li, Y. Anugrah, S.J. Koester, M. Li, Appl. Phys. Lett. 101, 11 (2012)

    Google Scholar 

  50. T. Winzer, A. Knorr, E. Malic, Nano Lett. 10, 4839 (2010)

    Article  ADS  Google Scholar 

  51. P.F. Li, Z.W. Wang, J. Appl. Phys. 123, 204308 (2018)

    Article  ADS  Google Scholar 

  52. Y. Cai, J. Zhu, Q.H. Liu, Appl. Phys. Lett. 106, 043105 (2015)

    Article  ADS  Google Scholar 

  53. J.N. Fuchs, P. Lederer, Phys. Rev. Lett. 98, 016803 (2007)

    Article  ADS  Google Scholar 

  54. Y.B. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)

    Article  ADS  Google Scholar 

  55. E. Tiras et al., J. Appl. Phys. 113, 4 (2013)

    Article  Google Scholar 

  56. V. Krstic, D. Obergfell, S. Hansel, G.L.J.A. Rikken, J.H. Blokland, M.S. Ferreira, S. Roth, Nano Lett. 8, 1700 (2008)

    Article  ADS  Google Scholar 

  57. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  58. W. Shockley, Phys. Rev. 79, 191 (1950)

    Article  ADS  MathSciNet  Google Scholar 

  59. W.J. Huybrechts, J. Phys. C. 10, 3761 (1977)

    Article  ADS  Google Scholar 

  60. T.D. Lee, F.E. Low, D. Pines, Phys. Rev. 90, 297 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  61. D. Curie, J. Phys. Radium 19, 694 (1958)

    Article  Google Scholar 

  62. F. Seitz, D. Turnbull, H. Ehrenreich, Solid State Physics. Advances in Research and Applications, vol. 21 (Academic Press, Cambridge, 1968)

    Google Scholar 

  63. J.-R.D. Djomou, S.C. Kenfack, A.J. Fotue, M.F.C. Fobasso, L.C. Fai, Physica B 548, 58 (2018)

    Article  ADS  Google Scholar 

  64. J.T. Devreesse, W. Huybrecht, L. Lemmens, Phys. Stat. Sol. B 48, 77 (1971)

    Article  ADS  Google Scholar 

  65. S.C. Kenfack, A.J. Fotue, M.F.C. Fobasso, G.N. Bawe Jr., L.C. Fai, Superlattices Microstruct. 111, 32 (2017)

    Article  ADS  Google Scholar 

  66. J. Patterson, B. Bailey, Solid State Physics: Introduction to the Theory, 2nd edn. (Springer, Heidelberg, 2010), p. 308. https://doi.org/10.1007/978-3-642-02589-1

    Book  Google Scholar 

  67. Y. Sun, J.L. Xia, Physica E 121, 114122 (2020)

    Article  Google Scholar 

  68. L.A. Ponomarenko et al., Phys. Rev. Lett. 102, 206603 (2009)

    Article  ADS  Google Scholar 

  69. A. Betti, G. Fiori, G. Iannaccone, Appl. Phys. Lett. 98, 212111 (2011)

    Article  ADS  Google Scholar 

  70. A.J. Fotue, S.C. Kenfack, M. Tiotsop, N. Issofa, A.V. Wirngo, M.P. Tabue Djemmo, H. Fotsin, L.C. Fai, Mod. Phys. Lett. B 29, 1550241 (2015)

    Article  ADS  Google Scholar 

  71. A.J. Fotue, S.C. Kenfack, N. Issofa, M. Tiotsop, M.P. Tabue Djemmo, A.V. Wirngo, H. Fotsin, L.C. Fai, Am. J. Mod. Phys. 4, 138 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Kenfack-Sadem or Y. Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kenfack-Sadem, C., Akoumba, N.M., Mbognou, F.C.F. et al. Dynamics and Decoherence of Polaron in Monolayer Graphene Under Magnetic Field. J Low Temp Phys 205, 29–44 (2021). https://doi.org/10.1007/s10909-021-02616-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02616-5

Keywords

Navigation