Skip to main content
Log in

Thermodynamic Properties and Optical Absorption of Polaron in Monolayer Graphene Under Laser Field

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this work, we use the variational method to investigate thermal properties and optical absorption of polaron in monolayer graphene under laser field. We have shown that the energies and the optical absorption of the system strongly depend on laser parameters and graphene characteristics. We found that the simple model adopted to calculate the optical absorption is enough accurate and interesting to investigate the optical absorption coefficient of the polarons in graphene. We observe that the laser assists the polaron in the optical absoprtion phenomenon. We observe that temperature, the coupling between electron and quantum of lattice vibration, laser parameters and wave number affect the disorder in the system. Contrary to temperature, the laser increases the disorder in the system. At low temperature, the polaronic system becomes decoherent for low values of wave number and gains coherency for high values of wave number. In addition, the coherence of the system is not significantly affected by the laser field but there is a considerable change at higher temperatures. We also observed that laser increases the capacity of system to store energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Khordad, H.R.R. Sedeh, Indian J. Phys. 92, 979 (2018)

    ADS  Google Scholar 

  2. A.A. Shokri, E.K. Safari, Indian J. Phys. 89, 23 (2015)

    ADS  Google Scholar 

  3. S. Acharya, R. Sharma, Indian J. Phys. 90, 543 (2016)

    ADS  Google Scholar 

  4. M. Wang et al., Int. J. Smart Nano Mater. 5, 123 (2014)

    Google Scholar 

  5. S. Mitra et al., Indian J. Phys. 90, 1091 (2016)

    Google Scholar 

  6. A.F.L. de Souaz et al., J. Phys. Chem. C 120, 27707 (2016)

    Google Scholar 

  7. S. Gadipelli, Z.X. Guo, Prog. Mater. Sci. 69, 1 (2015)

    Google Scholar 

  8. A. Marini, J.D. Cox, Phys. Rev. B 95, 125408 (2017)

    ADS  Google Scholar 

  9. B. Sadhukhan, A. Nayak, A. Mookerjee, Indian J. Phys. (2017). https://doi.org/10.1007/s12648-017-1067-2

    Article  Google Scholar 

  10. Y.C. Lee et al., Chin. J. Phys. 55, 1235 (2017)

    Google Scholar 

  11. M.H. Mohammed, F.N. Ajeel, A.M. Khudhair, Chin. J. Phys. 55, 1567 (2017)

    Google Scholar 

  12. Y. Yuan, X. Guo, L. An, W. Xu, Int. J. Mod. Phys. B 31, 1750045 (2017)

    ADS  Google Scholar 

  13. B.S. Kandemir, D. Akay, J. Magn. Magn. Mater. 384, 101–105 (2015)

    ADS  Google Scholar 

  14. C. Kane, E. Mele, Phys. Rev. Lett. 95, 226801 (2005)

    ADS  Google Scholar 

  15. A.L. Vartanian, Physica E 117, 113847 (2020)

    Google Scholar 

  16. Y. Sun, J. L. Xiao, Physica E 121, 114122 (2020)

    Google Scholar 

  17. S. Karak, Z.A. Page, J.S. Tinkham, P.M. Lahti, T. Emrick, V.V. Duzhko, Appl. Phys. Lett. 106(10), 101601 (2015)

    Google Scholar 

  18. M.A. Yuanyuan, J.I.A. Gentao, L.I.U. Yun, H.U.A.N.G. Xiuli, Chin. J. Quantum Electron. 36(3), 342 (2019)

    Google Scholar 

  19. G. Lee, K. Cho, Phys. Rev. B 79, 165440 (2009)

    ADS  Google Scholar 

  20. Z. W. Wang, L. Liu, Z. Q. Li, Appl. Phys. Lett. 106, 101601 (2015)

    ADS  Google Scholar 

  21. L.A. Ribeiro, W.F. da Cunha, A. L. de Almeida-Fonseca, G. M. e Silva, J. Phys. Chem. Lett. 6, 510 (2015)

    Google Scholar 

  22. A.V.P. Abreu, J.F. Teixeira, A. L. de Almeida-Fonseca, R. Gargano, G. M. e Silva, J. Phys. Chem. A 120, 4901 (2016)

    Google Scholar 

  23. W.F. da Cunha, L. A. Ribeiro-Junior, A. L. de Almeida-Fonseca, R. Gargano, G. M. e Silva, Carbon 91, 171 (2015)

    Google Scholar 

  24. G.G. da Silva, L. A. Ribeiro-Junior, M. L. Pereira-Junior, A. L. de Almeida-Fonseca, R. T. de Sousa-Jnior, G. M. e Silva, Sci. Rep. 9, 2909 (2019)

    ADS  Google Scholar 

  25. M.M. Fischer, L.E. de Sousa, L. L. e Castro, L. A. Ribeiro, R. T. de Sousa-Junior, G. M. e Silva, P. H. de Oliveira-Neto, Sci. Rep. 9, 17990 (2019)

    ADS  Google Scholar 

  26. M.M. Fischer, L. A. Ribeiro-Junior, W. F. Cunha, L. E. de Sousa, G. M. e Silva, P. H. de Oliveira-Neto, Carbon 158, 553 (2020)

    Google Scholar 

  27. L. A. Ribeiro-Junior, G. G. da Silva, R. T. de Sousa-Jnior, A. L. de Almeida-Fonseca, W. F. da Cunha, G. M. e Silva, Sci. Rep. 8, 1914 (2018)

    ADS  Google Scholar 

  28. A.V.P. Abreu, L. A. Ribeiro-Junior, G. G. Silva, M. L. Pereira-Junior, B. G. Enders, A. L. A. Fonseca, G. M. e Silva, J. Mole. Model. 25, 245 (2019)

    Google Scholar 

  29. G.G. da Silva, W.F. da Cunha, R. T. de Sousa-Junior, A. L. de Almeida-Fonseca, L. A. Ribeiro-Junior, G. M. e Silva, Phys. Chem. Chem. Phys. 20, 16712 (2018)

    Google Scholar 

  30. J.F. Teixeira, P. H. de Oliveira-Neto, W. F. da Cunha, L. A. Ribeiro, G. M. e Silva, J. Mole. Model. 23, 293 (2017)

    Google Scholar 

  31. B.S. Kandemir, D. Akay, Philos. Mag. 97(25), 2225–2235 (2017)

    ADS  Google Scholar 

  32. B.S. Kandemir, D. Akay, Physica status solidi (b) 255, 1800163 (2018)

    ADS  Google Scholar 

  33. D. Akay, Superlattices Microstruct. 117, 18–24 (2018)

    ADS  Google Scholar 

  34. J.T. Devreese, J. Phys. Condens. Matter 19, 255201 (2007)

    ADS  Google Scholar 

  35. J.T. Devreese, Universiteit Antwerpen, Belgium, (2016); e-print arXiv:1012.4576v6

  36. M. Koschorreck, D. Pertot, E. Vogt, B. Frohlich, M. Feld, M. Kohl, Nature 485, 619 (2012)

    ADS  Google Scholar 

  37. H. Sezen, H. Shang, F. Bebensee, C. Yang, M. Buchholz, A. Nefedov, S. Heissler, C. Carbogno, M. Scheffler, P. Rinke, C. Woll, Nat. Commun. 6, 6901 (2015)

    ADS  Google Scholar 

  38. J.T. Devreese, A.S. Alexandrov, Rep. Prog. Phys. 72, 066501 (2009)

    ADS  Google Scholar 

  39. S.N. Klimin, J. Tempere, J.T. Devreese, Phys. Rev. B 94, 125206 (2016)

    ADS  Google Scholar 

  40. S.N. Klimin, J.T. Devreese, Phys. Rev. B 89, 035201 (2014)

    ADS  Google Scholar 

  41. V.K. Mukhomorov, Eur. Phys. J. B 80, 19–23 (2011)

    ADS  Google Scholar 

  42. K. Rabenstein, D.V. Averin, Turk. J. Phys. 27, 313–322 (2003)

    Google Scholar 

  43. A. Grodecka, P. Machnikowski, Phys. Rev. B 73, 12 (2006)

    Google Scholar 

  44. M. Lovric, H.G. Krojanski, D. Suter, Phys. Rev. A 75, 4 (2007)

    Google Scholar 

  45. J.J. Hopfeld, A.V.M. Herz, Proc. Natl. Acad. Sci. USA 92, 6655 (1995)

    ADS  Google Scholar 

  46. R. Khordad, H.R.R. Sedehi, Indian J. Phys. 91, 825 (2017)

    ADS  Google Scholar 

  47. C.H. Bennett, D.P. Divincenzo, Nature 404, 247–255 (2000)

    ADS  Google Scholar 

  48. D.P. DiVincenzo, D. Loss, Superlattices Microstruct. 23, 419–432 (1998)

    ADS  Google Scholar 

  49. J.H. Chen, C. Jang, S. Adam, M.S. Fuhrer, E.D. Williams, M. Ishigami, Nat. Phys. 4, 377 (2008)

    Google Scholar 

  50. J.H. Chen, W.G. Cullen, C. Jang, M.S. Fuhrer, E.D. Williams, Phys. Rev. Lett. 102, 236805 (2009)

    ADS  Google Scholar 

  51. K. Kim, H.J. Park, B.C. Woo, K.J. Kim, G.T. Kim, W.S. Yun, Nano Lett. 8, 3092 (2008)

    ADS  Google Scholar 

  52. G. Compagnini, F. Giannazzo, S. Sonde, V. Raineri, E. Rimini, Carbon 47, 3201 (2009)

    Google Scholar 

  53. D.C. Kim, D.Y. Jeon, H.J. Chung, Y. Woo, J.K. Shin, S. Seo, Nanotechnology 20, 375703 (2009)

    Google Scholar 

  54. Z.M. Liao, B.H. Han, H.Z. Zhang, Y.B. Zhou, Q. Zhao, D.P. Yu, New J. Phys. 12, 083016 (2010)

    ADS  Google Scholar 

  55. M.Y. Han, J.C. Brant, Ph. Kim, Phys. Rev. Lett. 104, 056801 (2010)

    ADS  Google Scholar 

  56. C. Kenfack-Sadem, S. Mounbou, S.I. Fewo, M.F.C. Fobasso, A.J. Fotue, L.C. Fai, J. Low Temp. Phys. 200, 173 (2020)

    ADS  Google Scholar 

  57. S.C. Kenfack, A.J. Fotue, M.F.C. Fobasso, G.N. Bawe Jr., L.C. Fai, Superlattices Microstruct. 111, 32–44 (2017)

    ADS  Google Scholar 

  58. S.C. Kenfack, A.J. Fotue, M.F.C. Fobasso, J.-R.D. Djomou, M. Tiotsop, K.S.L. Ngouana, L.C. Fai, Indian J. Phys. 91, 1525–1531 (2017)

    ADS  Google Scholar 

  59. M.F.C. Fobasso, A.J. Fotue, S.C. Kenfack, G.N. Bawe Jr., D. Akay, L.C. Fai, Phys. Lett. A 382, 3490–3499 (2018)

    ADS  Google Scholar 

  60. S.W. Han, K. Myung-Whun, Opt. Commun. 454, 124447 (2020)

    Google Scholar 

  61. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    ADS  Google Scholar 

  62. A. Renyi, On Measures of Entropy and Information, Proc. Fourth Berkeley Symp. Math. Statist. Probab., 1, (Univ. of California Press, New York pp. 547–561, 1961)

  63. C.E. Shannon, Bell Syst. Tech. J. 27, 379 (1948)

    Google Scholar 

  64. J.L. Xiao, Superlattices Microstruct. 90, 308 (2016)

    ADS  Google Scholar 

  65. R. Khordad, Contin. Mech. Thermodyn. 28, 947 (2016)

    ADS  MathSciNet  Google Scholar 

  66. H.R. Rastegar, R. K. Sedehi, Indian J. Phys. 94, 605 (2020)

    Google Scholar 

  67. M. Servatkhah, R. Khordad, A. Firoozi, H.R. Rastegar, A. M. Sedehi, Eur. Phys. J. B 93, 111 (2020)

    ADS  Google Scholar 

  68. M.F.C. Fobasso, A.J. Fotue, S.C. Kenfack, C.M. Ekengoue, C.D.G. Ngoufack, D. Akay, L.C. Fai, Superlattices Microstruct. 129, 77 (2019)

    ADS  Google Scholar 

  69. H.Y. Zhou, S.W. Gu, Solid State Commun. 91, 725 (1994)

    ADS  Google Scholar 

  70. Z.-H. Ding, Y. Zhao, J.-L. Xiao, J. Low Temp. Phys. 182, 162–169 (2015)

    ADS  Google Scholar 

  71. C. Kenfack-Sadem, M.F.C. Fobasso, F. Amo-Mensah, E. Baloitcha, A. Fotue, L.C. Fai, Physica E 122, 114154 (2020)

    Google Scholar 

  72. M.F.C. Fobasso, C. Kenfack-Sadem, E. Baloitcha, A.J. Fotué, L.C. Fai, Eur. Phys. J. Plus 135, 471 (2020)

    Google Scholar 

  73. B. Scharf, V. Perebeinos, J. Fabian, I. Zutic, Phys. Rev. B 88, 125429 (2013)

    ADS  Google Scholar 

  74. A. Konar, T. Fang, D. Jena, Phys. Rev. B 82, 115452 (2010)

    ADS  Google Scholar 

  75. W.J. Huybrechts, J. Phys. C 10, 3761 (1977)

    ADS  Google Scholar 

  76. C. Tsallis, R.S. Mendes, A.R. Plastino, Physica A 261, 534 (1998)

    ADS  Google Scholar 

  77. E. M. F. Curado, C. Tsallis, J. Phys. A 24 L69 (1991)[Corrigenda 24 (1991) 3187 and 25 (1992) 1019]

  78. S. Abe, Y. Okamoto (eds.), Nonextensive Statistical Mechanics and Its Applications (Series Lecture Notes in Physics, Springer, Berlin, 2001)

    MATH  Google Scholar 

  79. C. Tsallis, C. Anteneodo, L. Borland, R. Osorio, Physica A 324, 89 (2003)

    ADS  MathSciNet  Google Scholar 

  80. Non extensive statistical mechanics and physical applications. Physica A 305, 1 (2002)

  81. W.P. Li, Z.W. Wang, J.W. Yin, Y.F. Yu, J. Phys. Condens. Matter 24, 135301 (2012)

    ADS  Google Scholar 

  82. Y. Xiao, Z.Q. Li, Z.W. Wang, J. Phys.: Condens. Matter 29, 485001 (2017)

    Google Scholar 

  83. D.V. van Coevorden, R. Sprik, A. Tip, A. Lagendijk, Phys. Rev. Lett. 77, 2412 (1996)

    ADS  Google Scholar 

  84. S. Thongrattanasiri, F.H.L. Koppens, F.J.G. de Abajo, PRL 108, 047401 (2012)

    ADS  Google Scholar 

  85. C. Ojeda-Aristizabal, M. Monteverde, R. Weil, M. Ferrier, S. Guéron, H. Bouchiat, Phys. Rev. Lett. 104, 186802 (2010)

    ADS  Google Scholar 

  86. F.V. Tikhonenko, A.A. Kozikov, A.K. Savchenko, R.V. Gorbachev, Phys. Rev. Lett. 103, 226801 (2009)

    ADS  Google Scholar 

  87. K. Liao, P. Mao, Y. Li, Y. Nan, F. Song, G. Wang, M. Han, Sens. Actuat. B Chem. 181, 125 (2013)

    Google Scholar 

  88. Y. Qin, J. Han, G. Guo, Y. Du, Z. Li, Y. Song, L. Pi, X. Wang, X. Wan, M. Han, F. Song, (2014)

  89. R. Houca, A. Jellal, Phys. Scr. 94, 105707 (2019). https://doi.org/10.1088/1402-4896/ab2f0e

  90. M. Sarita, R. Pooja, K. Ranjan, Glob. J. Nano 3, 555618 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Kenfack-Sadem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kenfack-Sadem, C., Fobasso Mbognou, F.C., Fotue, A.J. et al. Thermodynamic Properties and Optical Absorption of Polaron in Monolayer Graphene Under Laser Field. J Low Temp Phys 203, 327–344 (2021). https://doi.org/10.1007/s10909-021-02586-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02586-8

Keywords

Navigation