Skip to main content
Log in

Thermodynamics Properties and Optical Conductivity of Bipolaron in Graphene Nanoribbon Under Laser Irradiation

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this work, we are studying thermodynamics properties and optical absorption of bipolaron in graphene under a laser field using the variational method. We obtain the ground and first excited states of the bipolaron which strongly depend on laser parameter and graphene characteristics. It is seen that the optical absorption of a bipolaron in graphene depends strongly on the laser parameter. We observed that laser reduces the absorption of photons by laser. The latter also reinforces the electron–electron bound state in graphene leading to its strong energy storage capabilities. Our results show that the electron–electron interaction and laser parameters are important to control the disorder of the system. Due to its intensity and frequency, laser contribution is highest on the entropy, internal energy and specific heat, while the contribution of phonon modes is minimum on these thermodynamics properties suggesting the importance of laser on graphene structures. The results obtained are efficient because bipolaron is well formed and stable in graphene. This investigation may enlighten the understanding of the charge transport mechanism in graphene nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H.-L. Yip, A.K.Y. Jen, Energy Environ. Sci. 5, 5994–6011 (2012)

    Google Scholar 

  2. M. Pumera, Energy Environ. Sci. 4, 668–74 (2011)

    Google Scholar 

  3. L. Vicarelli, M.S. Vitiello, D. Coquillat, A. Lombardo, A.C. Ferrari, W. Knap et al., Nat. Mater. 11, 865–71 (2012)

    ADS  Google Scholar 

  4. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach et al., Nat. Lett. 442, 282–6 (2006)

    ADS  Google Scholar 

  5. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos et al., Science 306, 666–9 (2004)

    ADS  Google Scholar 

  6. X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Science 319, 1229–31 (2008)

    ADS  Google Scholar 

  7. T.O. Wehling, S. Yuan, A.I. Lichtenstein, A.K. Geim, M.I. Katsnelson, Phys. Rev. Lett. 105, 056802 (2010)

    ADS  Google Scholar 

  8. V.M. Pereira, J. Nilsson, A.H.C. Neto, Phys. Rev. Lett. 99, 166802 (2007)

    ADS  Google Scholar 

  9. S.Z. Liang, J.O. Sofo, Phys. Rev. Lett. 109, 256601 (2012)

    ADS  Google Scholar 

  10. J. Yan, M.S. Fuhrer, Phys. Rev. Lett. 107, 206601 (2011)

    ADS  Google Scholar 

  11. J.B. Bult, R. Crisp, C.L. Perkins, J.L. Blackburn, ACS Nano 7, 7251–61 (2013)

    Google Scholar 

  12. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Solid State Commun. 146, 351 (2008)

    ADS  Google Scholar 

  13. J.H. Chen, C. Jang, S. Xiao, M. Ishigami, M.S. Fuhrer, Nat. Nanotechnol. 3 (2008)

  14. R. Houca, A. Jellal, arXiv:1903.06945v1 [cond-mat.mes hall]. http://arxiv.org/1903.06945v1 (2019)

  15. S. Mann, P. Rani, R. Kumar, Glob. J. Nanomed. 3 (2018) GJO.MS.ID.555618

  16. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109–162 (2009)

    ADS  Google Scholar 

  17. V.N. Kotov, B. Uchoa, V.M. Pereira, F. Guinea, A.H. Castro Neto, Rev. Mod. Phys. 84, 1067–1125 (2012)

    ADS  Google Scholar 

  18. S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika et al., Appl. Phys. Lett. 92, 151911 (2008)

    ADS  Google Scholar 

  19. D. Yoon, Y.W. Son, H. Cheong, Nano Lett. 11, 3227–3231 (2011)

    ADS  Google Scholar 

  20. N. Mounet, N. Marzari, Phys. Rev. B 71, 205214 (2005)

    ADS  Google Scholar 

  21. A.H. Neto Castro, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109–162 (2009)

    ADS  Google Scholar 

  22. P. Rani, G.S. Dubey, V.K. Jindal Physica E: Low-dimensional Systems and Nanostructures. Physica 62, 28 (2014)

  23. V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Phys. Rev. Lett. 73, 3499 (1994)

    ADS  Google Scholar 

  24. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    ADS  Google Scholar 

  25. V.P. Gusynin, S.G. Sharapov, J.P. Carbotte, Int. J. Mod. Phys. B 21, 4611 (2007)

    ADS  Google Scholar 

  26. R. Jackiw, S.-Y. Pi, Phys. Rev. Lett. 98, 266402 (2007)

    ADS  Google Scholar 

  27. R. Jackiw, S.-Y. Pi, Phys. Rev. B 78, 132104 (2008)

    ADS  Google Scholar 

  28. D.A. Siegel, C. Hwang, A.V. Fedorov, A. Lanzara, New J. Phys. 14, 095006 (2012)

    ADS  Google Scholar 

  29. M.S. Fuhrer, Science 340, 1413 (2013)

    ADS  Google Scholar 

  30. P. Kumar, R. Skomski, P. Manchanda, A. Kashyap, P.A. Dowben, Curr. Appl. Phys. 14, S136 (2014)

    ADS  Google Scholar 

  31. A. Sharma, V.N. Kotov, A.H. Castro Neto, arXiv:1702.03551v1. http://arxiv.org/1702.03551v1

  32. J.P. Hagues, Phys. Rev. B 86, 064302 (2012)

    ADS  Google Scholar 

  33. G.Q. Hai, L. Candido, B.G.A. Brito, F.M. Peeters, J. Phys. Commun. 2, 035017 (2018)

    Google Scholar 

  34. C. Chen, J. Avila, S. Wang, Y. Wang, C. Shen, R. Yang, B. Nosarzewski, T.P. Devereaux, G. Zhang, M.C. Asensio, Nano Lett. 18, 1082 (2018)

    ADS  Google Scholar 

  35. J.C. Johannsen, S. Ulstrup, M. Bianchi, R. Hatch, D. Guan, F. Mazzola, L. Hornekr, F. Fromm, C. Raidel, T. Seyller, P. Hofmann, J. Phys. Condens. Matter 25, 094001 (2013)

    ADS  Google Scholar 

  36. L.D. Landau, Phys. Z. Sowjetunion 3, 644 (1933)

    Google Scholar 

  37. S. Sil, A.K. Giri, A. Chatterjee, Phys. Rev. B 43, 12642–12645 (1991). https://doi.org/10.1103/physrevb.43.12642

    Article  ADS  Google Scholar 

  38. S. Dzhumanov, P.J. Baimatov, S.T. Inoyatov, S.S. Djumanov, A.G. Gulyamov, Phys. Lett. A. (2019). https://doi.org/10.1016/j.physleta.2019.01.028

  39. M. Modarresi, A. Mogulkoc, M. Roknabadi, N. Shahtahmasebi, Phys. E 66, 303–308 (2015)

    Google Scholar 

  40. B.S. Kandemir, D. Akay, Philos. Mag. 97(25), 2225–2235 (2017)

    ADS  Google Scholar 

  41. B.S. Kandemir, D. Akay, Phys. Status Solidi B 255(10), 1800163 (2018)

    ADS  Google Scholar 

  42. L.A. Ribeiro, W.F. da Cunha, P.H. de Oliveria Neto, R.G.M. Gargano, E. Silva, New J. Chem. 37, 2829–2836 (2013)

    Google Scholar 

  43. C. Kenfack-Sadem, M.F.C. Fobasso, F. Amo-Mensah, E. Baloitcha, A. Fotué, L.C. Fai, Phys. E 122, 114154 (2020)

    Google Scholar 

  44. A.V.P. Abreu, L.A. Ribeiro-Junior, G.G. Silva, M.L.P. Junior, B.G. Enders, A.L.A. Fonseca, G.M. Silva, J. Mol. Model. 25, 245 (2019)

    Google Scholar 

  45. W.F. da Cunha, L.A.R. Junior, A.L. de Almeida Fonseca, R. Gargano, G.M. Silva, Carbon 91, 171–177 (2015)

    Google Scholar 

  46. L.A. Ribeiro, W.F. da Cunha, A. Ld. A. Fonseca, G.M. e Silva, and S. Stafström, J. Phys. Chem. Lett. 6, 510–514 (2015)

  47. P.H. de Oliveira Neto, J.F. Teixeira, W.F. da Cunha, R. Gargano, G.M. e Silva, J. Phys. Chem. Lett. 3, 3039–3042 (2012)

    Google Scholar 

  48. G.G. Silva, L.A.R. Junior, M.L.P. Junior, A.L. de Almeida Fonseca, R.T. de Sousa Júnior, G.M.E. Silva, Sci. Rep. 9, 1–8 (2019)

  49. M.M. Fischer, L.A.R. Junior, W.F. da Cunha, L.E. de Sousa, G.M. Silva, P.H. de Oliveira Neto, Carbon 158, 553–558 (2020)

    Google Scholar 

  50. M.M. Fischer, L.E. de Sousa, L.L. Castro, L.A. Ribeiro, R.T. de Sousa, G.M. Silva, P.H. de Oliveira Neto, Sci. Rep. 999, 11–88 (2019)

    Google Scholar 

  51. L.A. Ribeiro, G.G. da Silva, R.T. de Sousa, A.L. de Almeida Fonseca, W.F. da Cunha, G.M. Silva, Sci. Rep. 8, 1–8 (2018)

    ADS  Google Scholar 

  52. J.F. Teixeira, P.H. de Oliveira Neto, W.F. da Cunha, L.A. Ribeiro, G.M. Silva, J. Mol. Model. 23, 293 (2017)

    Google Scholar 

  53. A.V.P. Abreu, J.F. Teixeira, A.L.D.A. Fonseca, R. Gargano, G.M. Silva, L.A. Ribeiro, J. Phys. Chem. A 120, 4901–4906 (2016)

    Google Scholar 

  54. V.A. Rigo, T.B. Martins, A.J.R. da Silva, A. Fazzio, R.H. Miwa, Phys. Rev. B 79, 075435 (2009)

    ADS  Google Scholar 

  55. P.H. Oliveira Neto de, J.F. Teixeira, W.F. da Cunha, R. Gargano, G.M. Silva, J. Phys. Chem. Lett. 3, 3039–3042 (2012)

    Google Scholar 

  56. M.F.C. Fobasso, C. Kenfack-Sadem, E. Baloitcha, A.J. Fotué, L.C. Fai, Eur. Phys. J. Plus 135, 471 (2020)

    Google Scholar 

  57. C. Kenfack-Sadem, S. Mounbou, S.I. Fewo, M.F.C. Fobasso, A.J. Fotue, L.C. Fai, J. Low Temp. Phys. (2020). https://doi.org/10.1007/s10909-020-02478-3

  58. X.-F. Bai, W. Xin, H.W. Yin, Eerdunchaolu, Int. J. Theor. Phys. 56, 1673–1684 (2017)

  59. X.-F. Bai, Ying Zhang, Wuyunqimuge, Eerdunchaolu, Chin. Phys. B 25, 077804 (2016)

  60. S. Mukhopadhyay, A. Chatterjee, J. Phys. Condens. Matter 84017 (1996)

  61. R.T. Senger, A. Erçelebi, Eur. Phys. J. B 16439 (2000)

  62. E.P. Pokatilov, V.M. Fomin, J.T. Devreese, S.N. Balaban, S.N. Klimin, J. Phys. Condens. Matter 119033 (1999)

  63. J.T. Devreese, Z. Phys. B 104, 601 (1997)

    ADS  Google Scholar 

  64. C. Chen, J. Avila, E. Frantzeskakis, A. Levy, M.C. Asensio, Nat. Commun. 6, 8585 (2015)

    ADS  Google Scholar 

  65. V.M. Fomin, J.T. Devreese, Solid State Commun. 96, 79–84 (1995)

    ADS  Google Scholar 

  66. M.F.C. Fobasso, A.J. Fotue, S.C. Kenfack, C.M. Ekengue, C.D.G. Ngoufack, D. Akay, L.C. Fai, Superlattices and Microstructures 129, 77–90 (2019)

    ADS  Google Scholar 

  67. Y. Sun, Z.H. Ding, J.L. Xiao, J. Low Temp. Phys. 177, 151 (2014)

    ADS  Google Scholar 

  68. V.K. Mukhomorov, Eur. Phys. J. B 80, 19–23 (2011)

    ADS  Google Scholar 

  69. Y.W. Zhao, C. Han, W. Xin, Eerdunchaolu. Superlattices Microstruct. 74, 198 (2014)

    ADS  Google Scholar 

  70. M.K. Elsaid, E. Hijaz, Acta Physica Polonica A 131, 6 (2017)

    Google Scholar 

  71. S. Gumber, M. Kumar, M. Gambhir, M. Mohan, P.K. Jha, Can. J. Phys. 93, 1–5 (2015)

    Google Scholar 

  72. J.D. Castano-Yepes, C.F. Ramirez-Gutierrez, H. Correa-Gallego, E.A. Gomez, arXiv:1609.01359v2. http://arxiv.org/abs/1609.01359v2

  73. Y. Liao, Phys. Rev. A 89, 022510 (2014)

    ADS  Google Scholar 

  74. J.J.S. De Groote, J.E.M. Hornos, A.V. Chaplik, Phys. Rev. B 46, 12773 (1992)

    ADS  Google Scholar 

  75. B. Boyacioglu, A. Chatterjee, J. Appl. Phys. 112, 083514 (2012)

    ADS  Google Scholar 

  76. N.T.T. Nguyen, F.M. Peeters, Phys. Rev. B 78, 045321 (2008)

    ADS  Google Scholar 

  77. O. Voskoboynikov, O. Bauga, C.P. Lee, O. Tretyak, J. Appl. Phys. 94, 5891 (2003)

    ADS  Google Scholar 

  78. A. Boda et al., Phys. B 498, 43–48 (2016)

    ADS  Google Scholar 

  79. A.J. Heeger, Angewandte Chemie International Edition 40, 2591–2611 (2001)

    Google Scholar 

  80. G.G. da Silva, W.F. da Cunha, R.T. de Sousa Junior, A.L. de Almeida Fonseca, L.A. Ribeiro Junior, G.M. e Silva, Phys. Chem. Chem. Phys. 20, 16712-16718 (2018)

  81. M. Sarita, P. Rani, K. Ranjan, G.S. Dubey, V.K. Jindal, RSC Adv. 6, 12158 (2016)

    ADS  Google Scholar 

  82. S. Mann, R. Kumar, V.K. Jindal, RSC Adv. 7, 22378–22387 (2017)

    ADS  Google Scholar 

  83. W.J. Huybrechts, J. Phys. C 10, 3761 (1977)

    ADS  Google Scholar 

  84. J.T. Devreese, A.S. Alexandrov, Rep. Prog. Phys. 72, 066501 (2009)

    ADS  Google Scholar 

  85. J.T. Devreese, Frohlich Polarons-Lecture Course Including Detailed Theoretical Derivations (Universiteit Antwerpen, Belgium, e-print arXiv:1012.4576v6. http://arxiv.org/1012.4576v6 (2016)

  86. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    ADS  Google Scholar 

  87. C. Tsallis, R.S. Mendes, A.R. Plastino, Phys. A 261, 534 (1998)

  88. S. Thongrattanasiri, F.H. L. Koppens, F. Javier Garcıa de Abajo, Phys. Rev. Lett. 108, 047401 (2012)

  89. F.N. Xia, T. Mueller, Y.M. Lin, A. Valdes-Garcia, P. Avouris, Nat. Nanotech. 4, 839 (2009)

    ADS  Google Scholar 

  90. M.C. Lemme et al., Nano Lett. 11, 4134 (2011)

    ADS  Google Scholar 

  91. J.C.W. Song et al., Nano Lett. 11, 4688 (2011)

    ADS  Google Scholar 

  92. M.F.C. Fobasso, A.J. Fotue, S.C. Kenfack, G.N. Bawe Jr., D. Akay, L.C. Fai, Phys. Lett. A 382, 3490–3499 (2018)

    ADS  Google Scholar 

  93. S.W. Han, K. Myung-Whun, Opt. Commun. 454, 124447 (2020)

    Google Scholar 

  94. S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, L.A. Ponomarenko, D. Jiang, A.K. Geim, Phys. Rev. Lett. 97, 016801 (2006)

    ADS  Google Scholar 

  95. S. Minke, J. Bundesmann, D. Weiss, J. Eroms, arXiv:1208.2564v3 [cond-mat.mes-hall]. http://arxiv.org/1208.2564v3 (2012)

  96. A.R. Wright, Junfeng Liu, Zhongshui Ma, Z. Zeng, W. Xu, C. Zhang, Microelectronics J. 40, 716 (2009)

    Google Scholar 

  97. R. Nasir, M.A. Khan, M. Tahir, K. Sabeeh, J. Phys. Condens. Matter 22, 025503 (2010)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. C. Fobasso Mbognou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mbognou, F.C.F., Kenfack-Sadem, C., Fotue, A.J. et al. Thermodynamics Properties and Optical Conductivity of Bipolaron in Graphene Nanoribbon Under Laser Irradiation. J Low Temp Phys 203, 204–224 (2021). https://doi.org/10.1007/s10909-021-02573-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02573-z

Keywords

Navigation