Skip to main content
Log in

Quasi-2D \(\hbox {H}_2\): On the Verge of Turning Superfluid?

  • Rapid Communication
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

First principle computer simulations of a thin parahydrogen film adsorbed on a silica substrate at low temperature (below 6 K) yield no evidence that the top layer is liquid and/or in the proximity of a superfluid transition, as claimed in recent experimental work (Makiuchi et al. in Phys Rev Lett 123:245301, 2019). Computed values of first and second layer completion densities are in quantitative agreement with experiment, but as observed also on other substrates, the top layer is an insulating crystal, quantum-mechanical exchanges of molecules are non-existent, and the overall physical behavior of the system can be understood largely along classical lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Theoretical evidence suggests that the properties of an adsorbed layer of p-\(\hbox {H}_2\) on the inner surface of a cylinder of such a large diameter, are essentially identical with those on a flat substrate. See, for instance, Ref. [10].

  2. This value is approximately 40% of that on a graphene substrate, for which second layer promotion is predicted to occur at \(\theta \sim 0.112\) \(\AA ^{-2}\) [36].

  3. More quantitatively, we estimate that the fraction of p-\(\hbox {H}_2\) molecules involved in exchange cycles in the most favorable conditions explored here, namely for the top layer of a two-layer film of coverage \(\theta =0.155\) \(\AA ^{-2}\) at a temperature \(T=0,5\) K is less than 0.001%.

  4. It is worth pointing out that even \(^4\)He would crystallize at low temperature, if exchanges were suppressed, as shown in Ref. [24].

  5. Defects are attributable both to the relatively high temperature, as well as the difficulty of fitting two triangular lattices of different density and number of particles, i.e., the two different layers, in the same simulation cell.

References

  1. V.L. Ginzburg, A.A. Sobyanin, JETP Lett. 15, 242 (1972)

    ADS  Google Scholar 

  2. M. Bretz, A.L. Thomson, Phys. Rev. B 24, 467 (1981)

    ADS  Google Scholar 

  3. G.M. Seidel, H.J. Maris, F.I.B. Williams, J.G. Cardon, Phys. Rev. Lett. 56, 2380 (1986)

    ADS  Google Scholar 

  4. M. Rall, J.P. Brison, N.S. Sullivan, Phys. Rev. B 44, 9639 (1991)

    ADS  Google Scholar 

  5. M. Schindler, A. Dertinger, Y. Kondo, F. Pobell, Phys. Rev. B 53, 11451 (1996)

    ADS  Google Scholar 

  6. P.E. Sokol, R.T. Azuah, M.R. Gibbs, S.M. Bennington, J. Low Temp. Phys. 103, 23 (1996)

    ADS  Google Scholar 

  7. A.C. Clark, X. Lin, M.H.W. Chan, Phys. Rev. Lett. 97, 245301 (2006)

    ADS  Google Scholar 

  8. M. Boninsegni, Phys. Rev. B 70, 193411 (2004)

    ADS  Google Scholar 

  9. M. Boninsegni, Phys. Rev. Lett. 111, 235303 (2013)

    ADS  Google Scholar 

  10. T. Omiyinka, M. Boninsegni, Phys. Rev. B 93, 104501 (2016)

    ADS  Google Scholar 

  11. A. Del Maestro, M. Boninsegni, Phys. Rev. B 95, 054517 (2017)

    ADS  Google Scholar 

  12. J. Turnbull, M. Boninsegni, Phys. Rev. B 78, 144509 (2008)

    ADS  Google Scholar 

  13. M. Boninsegni, New J. Phys. 7, 78 (2005)

    ADS  Google Scholar 

  14. M. Boninsegni, Phys. Rev. B 93, 054507 (2016)

    ADS  Google Scholar 

  15. P. Sindzingre, D.M. Ceperley, M.L. Klein, Phys. Rev. Lett. 67, 1871 (1991)

    ADS  Google Scholar 

  16. Y. Kwon, K.B. Whaley, Phys. Rev. Lett. 89, 273401 (2002)

    ADS  Google Scholar 

  17. F. Mezzacapo, M. Boninsegni, Phys. Rev. Lett. 97, 045301 (2006)

    ADS  Google Scholar 

  18. F. Mezzacapo, M. Boninsegni, Phys. Rev. A 75, 033201 (2007)

    ADS  Google Scholar 

  19. M. Boninsegni, J. Low Temp. Phys. 201, 193 (2020)

    ADS  Google Scholar 

  20. S. Grebenev, B. Sartakov, J.P. Toennies, A.F. Vilesov, Science 289, 1532 (2000)

    ADS  Google Scholar 

  21. H. Li, R.J. Le Roy, P.-N. Roy, A.R.W. McKellar, Phys. Rev. Lett. 105, 133401 (2010)

    ADS  Google Scholar 

  22. P.L. Raston, W. Jäger, H. Li, R.J. Le Roy, P.-N. Roy, Phys. Rev. Lett. 108, 253402 (2012)

    ADS  Google Scholar 

  23. M. Boninsegni, Phys. Rev. B 97, 054517 (2018)

    ADS  Google Scholar 

  24. M. Boninsegni, L. Pollet, N. Prokof’ev, B. Svistunov, Phys. Rev. Lett. 109, 025302 (2012)

    ADS  Google Scholar 

  25. T. Makiuchi, K. Yamashita, M. Tagai, Y. Nago, K. Shirahama, Phys. Rev. Lett. 123, 245301 (2019)

    ADS  Google Scholar 

  26. D.R. Nelson, J.M. Kosterlitz, Phys. Rev. Lett. 39, 1201 (1977)

    ADS  Google Scholar 

  27. M. Boninsegni, Phys. Rev. B 70, 125405 (2004)

    ADS  Google Scholar 

  28. M. Dusseault, M. Boninsegni, Phys. Rev. B 95, 104518 (2017)

    ADS  Google Scholar 

  29. I.F. Silvera, V.V. Goldman, J. Chem. Phys. 69, 4209 (1978)

    ADS  Google Scholar 

  30. L. Pricaupenko, J. Treiner, Phys. Rev. Lett. 74, 430 (1995)

    ADS  Google Scholar 

  31. V. Apaja, E. Krotscheck, Phys. Rev. B 67, 184304 (2003)

    ADS  Google Scholar 

  32. G. Vidali, G. Ihm, H.-Y. Kim, M.W. Cole, Surf. Sci. Rep. 12, 133 (1991)

    ADS  Google Scholar 

  33. M. Boninsegni, S.-Y. Lee, V.H. Crespi, Phys. Rev. Lett. 86, 3360 (2001)

    ADS  Google Scholar 

  34. K. Nho, E. Manousakis, Phys. Rev. B 67, 195411 (2003)

    ADS  Google Scholar 

  35. M. Boninsegni, J. Low Temp. Phys. 141, 27 (2005)

    ADS  Google Scholar 

  36. M. Dusseault, M. Boninsegni, Phys. Rev. B 97, 205403 (2018)

    ADS  Google Scholar 

  37. K. Nho, E. Manousakis, Phys. Rev. B 65, 115409 (2002)

    ADS  Google Scholar 

  38. R.P. Feynman, Phys. Rev. 91, 1291 (1953)

    ADS  Google Scholar 

  39. M. Boninsegni, A.B. Kuklov, L. Pollet, N.V. Prokof’ev, B.V. Svistunov, M. Troyer, Phys. Rev. Lett. 99, 035301 (2007)

    ADS  Google Scholar 

  40. M. Boninsegni, M.W. Cole, F. Toigo, Phys. Rev. Lett. 83, 2002 (1999)

    ADS  Google Scholar 

  41. F. Fernández-Alonso, C. Cabrillo, R. Fernández-Perea, F.J. Bermejo, M.A. González, C. Mondelli, E. Farhi, Phys. Rev. B 86, 144524 (2012)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Boninsegni.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boninsegni, M. Quasi-2D \(\hbox {H}_2\): On the Verge of Turning Superfluid?. J Low Temp Phys 202, 1–10 (2021). https://doi.org/10.1007/s10909-020-02548-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02548-6

Keywords

Navigation