Skip to main content
Log in

Landau Quasiparticles in Weak Power-Law Liquids

  • Rapid Communication
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The failure of Landau-Fermi liquid theory is often considered a telltale sign of universal, scale-invariant behavior in the emergent field theory of interacting fermions. Nevertheless, there exist borderline cases where weak scale invariance coupled with particle-hole asymmetry can coexist with the Landau quasiparticle paradigm. In this letter, I show explicitly that a Landau-Fermi liquid can exist for weak power-law scaling of the retarded Green’s function. Such an exotic variant of the traditional Fermi liquid is shown to always be incompatible with Luttinger’s theorem for any non-trivial scaling. This result yields evidence for a Fermi liquid-like ground state in the high-field, underdoped pseudogap phase of the high-temperature cuprate superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Although power-law liquids were originally defined as a system characterized by a power-law scaling of the self-energy [25], I take the terminology to mean some general scaling of the Green’s function itself [26] throughout this paper.

References

  1. J.A. Hertz, Phys. Rev. B 14(3), 1165–1184 (1976). https://doi.org/10.1103/PhysRevB.14.1165

    Article  ADS  Google Scholar 

  2. A.J. Millis, Phys. Rev. B 48(10), 7183–7196 (1993). https://doi.org/10.1103/PhysRevB.48.7183

    Article  ADS  Google Scholar 

  3. A.J. Schofield, Contemp. Phys. 40, 95–115 (1999). https://doi.org/10.1080/001075199181602

    Article  ADS  Google Scholar 

  4. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 2011). ISBN: 978-0-521-51468-2

    Book  Google Scholar 

  5. Y.H. Su, H.T. Lu, Front. Phys. 13, 137103 (2017). https://doi.org/10.1007/s11467-017-0734-2

    Article  Google Scholar 

  6. Y. Ando, S. Komiya, K. Segawa, S. Ono, Y. Kurita, Phys. Rev. Lett. 93(26), 267001 (2004). https://doi.org/10.1103/PhysRevLett.93.267001

    Article  ADS  Google Scholar 

  7. N.E. Hussey, J. Phys. Condens. Matter 20, 123201 (2008). https://doi.org/10.1088/0953-8984/20/12/123201

    Article  ADS  Google Scholar 

  8. R.A. Cooper, Y. Wang, B. Vignolle, O.J. Lipscombe, S.M. Hayden, Y. Tanabe, T. Adachi, Y. Koike, M. Nohara, H. Takagi, C. Proust, N.E. Hussey, Science 323, 603–607 (2009)

    Article  ADS  Google Scholar 

  9. T.R. Chien, Z.Z. Wang, N.P. Ong, Phys. Rev. Lett. 67(15), 2088–2091 (1991). https://doi.org/10.1103/PhysRevLett.67.2088

    Article  ADS  Google Scholar 

  10. A. Tyler, A. Mackenzie, Phys. C Supercond. 282–287 1185–1186 (1997). In: Proceedings of the International Conference on Materials and Mechanisms of Superconductivity High Temperature Superconductors V. http://www.sciencedirect.com/science/article/pii/S092145349700751X

  11. Y. Zhang, N.P. Ong, Z.A. Xu, K. Krishana, R. Gagnon, L. Taillefer, Phys. Rev. Lett. 84(10), 2219–2222 (2000). https://doi.org/10.1103/PhysRevLett.84.2219

    Article  ADS  Google Scholar 

  12. S.A. Hartnoll, A. Karch, Phys. Rev. B 91(15), 155126 (2015). https://doi.org/10.1103/PhysRevB.91.155126

    Article  ADS  Google Scholar 

  13. A. Karch, J. High Energy Phys. (2014). https://doi.org/10.1007/JHEP06(2014)140

    Article  Google Scholar 

  14. A.A. Patel, J. McGreevy, D.P. Arovas, S. Sachdev, Phys. Rev. X 8(2), 021049 (2018). https://doi.org/10.1103/PhysRevX.8.021049

    Article  Google Scholar 

  15. D. Chowdhury, Y. Werman, E. Berg, T. Senthil, Phys. Rev. X 8(3), 031024 (2018). https://doi.org/10.1103/PhysRevX.8.031024

    Article  Google Scholar 

  16. A.A. Patel, S. Sachdev, Phys. Rev. Lett. 123(6), 066601 (2019). https://doi.org/10.1103/PhysRevLett.123.066601

    Article  ADS  MathSciNet  Google Scholar 

  17. G. La Nave, K. Limtragool, P.W. Phillips, Rev. Mod. Phys. 91(2), 021003 (2019). https://doi.org/10.1103/RevModPhys.91.021003

    Article  ADS  Google Scholar 

  18. P.W. Phillips, G. La Nave, Springer Proceedings in Mathematics and Statistics. PreprintarXiv:1911.05750 (2020)

  19. L. Landau, JETP 3(6), 1058 (1956)

    Google Scholar 

  20. A. Migdal, JETP 5(2), 399 (1957)

    Google Scholar 

  21. V. Galitskii, A. Migdal, JETP 7(1), 139 (1958)

    Google Scholar 

  22. A.A. Abrikosov, I.E. Dzyaloshinski, L. Gor’kov, Methods of Quantum Field Theory in Statistical Physics (Dover Publications, Mineola, 1975). ISBN: 978-0-486-63228-5

    Google Scholar 

  23. P.W. Anderson, Phys. Rev. B 78(17), 174505 (2008). https://doi.org/10.1103/PhysRevB.78.174505

    Article  ADS  Google Scholar 

  24. P.W. Anderson, P.A. Casey, Phys. Rev. B 80(9), 094508 (2009). https://doi.org/10.1103/PhysRevB.80.094508

    Article  ADS  Google Scholar 

  25. T. Reber, et al. (2015) Preprint arXiv:1509.01611v1

  26. K. Limtragool, Z. Leong, P.W. Phillips, SciPost Phys. 5(5), 49 (2018). https://doi.org/10.21468/SciPostPhys.5.5.049

    Article  ADS  Google Scholar 

  27. P.W. Phillips, B.W. Langley, J.A. Hutasoit, Phys. Rev. B 88(11), 115129 (2013). https://doi.org/10.1103/PhysRevB.88.115129

    Article  ADS  Google Scholar 

  28. Z. Leong, C. Setty, K. Limtragool, P.W. Phillips, Phys. Rev. B 96(20), 205101 (2017). https://doi.org/10.1103/PhysRevB.96.205101

    Article  ADS  Google Scholar 

  29. H. Georgi, Phys. Rev. Lett. 98(22), 221601 (2007). https://doi.org/10.1103/PhysRevLett.98.221601

    Article  ADS  Google Scholar 

  30. H. Georgi, Phys. Lett. B 650, 275–278 (2007)

    Article  ADS  Google Scholar 

  31. M.P. Gochan, H. Li, K.S. Bedell, J. Phys. Commun. 3, 065008 (2019). https://doi.org/10.1088/2399-6528/ab292b/meta

    Article  Google Scholar 

  32. P. Wölfle, A. Rosch, J. Low Temp. Phys. 147, 165–177 (2007). https://doi.org/10.1007/s10909-007-9308-y

    Article  ADS  Google Scholar 

  33. P. Wölfle, E. Abrahams, Phys. Rev. B 84(4), 041101 (2011). https://doi.org/10.1103/PhysRevB.84.041101

    Article  ADS  Google Scholar 

  34. E. Abrahams, P. Wölfle, Proc. Natl. Acad. Sci. 109, 3238–3242 (2012)

    Article  ADS  Google Scholar 

  35. N. Doiron-Leyraud et al., Nature 447, 565–568 (2007)

    Article  ADS  Google Scholar 

  36. J.W. Mei, S. Kawasaki, G.Q. Zheng, Z.Y. Weng, X.G. Wen, Phys. Rev. B 85(13), 134519 (2012). https://doi.org/10.1103/PhysRevB.85.134519

    Article  ADS  Google Scholar 

  37. T. Senthil, S. Sachdev, M. Vojta, Phys. Rev. Lett. 90(21), 216403 (2003). https://doi.org/10.1103/PhysRevLett.90.216403

    Article  ADS  Google Scholar 

  38. M. Punk, A. Allais, S. Sachdev, Proc. Natl. Acad. Sci. 112, 9552–9557 (2015)

    Article  ADS  Google Scholar 

  39. S. Sachdev, Rep. Prog. Phys. 82, 014001 (2018). https://doi.org/10.1088/1361-6633/aae110

    Article  ADS  MathSciNet  Google Scholar 

  40. E.G. Moon, S. Sachdev, Phys. Rev. B 83(22), 224508 (2011). https://doi.org/10.1103/PhysRevB.83.224508

    Article  ADS  Google Scholar 

  41. K.B. Blagoev, K.S. Bedell, Phys. Rev. Lett. 79(6), 1106–1109 (1997). https://doi.org/10.1103/PhysRevLett.79.1106

    Article  ADS  Google Scholar 

  42. J.T. Heath, K.S. Bedell, New J. Phys. 22, 063011 (2020). https://doi.org/10.1088/1367-2630/ab890e

    Article  ADS  MathSciNet  Google Scholar 

  43. F.D.M. Haldane, J. Phys. C Solid State Phys. 14, 2585–2609 (1981). https://doi.org/10.1088/0022-3719/14/19/010/meta

    Article  ADS  Google Scholar 

  44. X.G. Wen, Phys. Rev. B 42(10), 6623–6630 (1990). https://doi.org/10.1103/PhysRevB.42.6623

    Article  ADS  Google Scholar 

  45. J. Voit, Rep. Prog. Phys. 58, 977–1116 (1995). https://doi.org/10.1088/0034-4885/58/9/002

    Article  ADS  Google Scholar 

  46. J. Gonzálex, M.A. Martín-Delgado, G. Sierra, A.H. Vozmediano, Quantum Electron Liquids and High-Tc Superconductivity (Springer, Berlin, 1995). ISBN: 3-540-60503-7

    Book  Google Scholar 

  47. J. Sólyom, Adv. Phys. 28, 201–303 (1979). https://doi.org/10.1080/00018737900101375

    Article  ADS  Google Scholar 

  48. A. Ruckenstein, C. Varma, Phys. C Supercond. 185–189, 134–140 (1991)

    Article  ADS  Google Scholar 

  49. A. Shekhter, A.M. Finkel’stein, Proc. Natl. Acad. Sci. U.S.A. 103, 15765–15769 (2006)

    Article  ADS  Google Scholar 

  50. I.E. Dzyaloshinskii, A.I. Larkin, JETP Lett. 38(1), 201 (1974)

    Google Scholar 

  51. P.A. Bares, X.G. Wen, Phys. Rev. B 48(12), 8636–8650 (1993). https://doi.org/10.1103/PhysRevB.48.8636

    Article  ADS  Google Scholar 

  52. I. Dzyaloshinskii, Phys. Rev. B 68(8), 085113 (2003). https://doi.org/10.1103/PhysRevB.68.085113

    Article  ADS  Google Scholar 

  53. G. Zheng, P.L. Kuhns, A.P. Reyes, B. Liang, C.T. Lin, Phys. Rev. Lett. 94, 047006 (2005). https://doi.org/10.1103/PhysRevLett.94.047006

    Article  ADS  Google Scholar 

  54. S. Kawasaki, C. Lin, P.L. Kuhns, A.P. Reyes, G. Zheng, Phys. Rev. Lett. 105(13), 137002 (2010). https://doi.org/10.1103/PhysRevLett.105.137002

    Article  ADS  Google Scholar 

  55. S.I. Mirzaei, D. Stricker, J.N. Hancock, C. Berthod, A. Georges, E. van Heumen, M.K. Chan, X. Zhao, Y. Li, M. Greven, N. Barišić, D. van der Marel, Proc. Natl. Acad. Sci. U.S.A. 110, 5774–5778 (2013)

    Article  ADS  Google Scholar 

  56. N. Barišić, M.K. Chan, Y. Li, G. Yu, X. Zhao, M. Dressel, A. Smontara, M. Greven, Proc. Natl. Acad. Sci. U.S.A. 110, 12235–12240 (2013)

    Article  ADS  Google Scholar 

  57. M.K. Chan, M.J. Veit, C.J. Dorow, Y. Ge, Y. Li, W. Tabis, Y. Tang, X. Zhao, N. Barišić, M. Greven, Phys. Rev. Lett. 113(17), 177005 (2014). https://doi.org/10.1103/PhysRevLett.113.177005

    Article  ADS  Google Scholar 

  58. C. Proust, B. Vignolle, J. Levallois, S. Adachi, N.E. Hussey, Proc. Natl. Acad. Sci. U.S.A. 113, 13654–13659 (2016)

    Article  ADS  Google Scholar 

  59. W. Kohn, J.M. Luttinger, Phys. Rev. 118(1), 41–45 (1960). https://doi.org/10.1103/PhysRev.118.41

    Article  ADS  MathSciNet  Google Scholar 

  60. J.M. Luttinger, J.C. Ward, Phys. Rev. 118(5), 1417–1427 (1960). https://doi.org/10.1103/PhysRev.118.1417

    Article  ADS  MathSciNet  Google Scholar 

  61. J.M. Luttinger, Phys. Rev. 119(4), 1153–1163 (1960). https://doi.org/10.1103/PhysRev.119.1153

    Article  ADS  MathSciNet  Google Scholar 

  62. M. Yamanaka, M. Oshikawa, I. Affleck, Phys. Rev. Lett. 79(6), 1110–1113 (1997). https://doi.org/10.1103/PhysRevLett.79.1110

    Article  ADS  Google Scholar 

  63. M. Oshikawa, Phys. Rev. Lett. 84(15), 3370–3373 (2000). https://doi.org/10.1103/PhysRevLett.84.3370

    Article  ADS  Google Scholar 

  64. G.F. Giuliani, G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, Cambridge, 2005). ISBN: 978-0-521-82112-6

    Book  Google Scholar 

  65. T.D. Stanescu, P. Phillips, T.P. Choy, Phys. Rev. B 75(10), 104503 (2007). https://doi.org/10.1103/PhysRevB.75.104503

    Article  ADS  Google Scholar 

  66. G. Baym, Phys. Rev. 127(4), 1391–1401 (1962). https://doi.org/10.1103/PhysRev.127.1391

    Article  ADS  MathSciNet  Google Scholar 

  67. J.M. Cornwall, R. Jackiw, E. Tomboulis, Phys. Rev. D 10(8), 2428–2445 (1974). https://doi.org/10.1103/PhysRevD.10.2428

    Article  ADS  Google Scholar 

  68. A.M.T. Tremblay, Lecture Notes for Cifar-PiTP International Summer School on Numerical Methods for Correlated Systems in Condensed Matter. https://pitp.phas.ubc.ca/confs/sherbrooke/archives.html (2008)

  69. J. Meng et al., Phys. Rev. B 79(2), 024514 (2009). https://doi.org/10.1103/PhysRevB.79.024514

    Article  ADS  Google Scholar 

  70. J. Meng et al., Nature 462, 335–338 (2009)

    Article  ADS  Google Scholar 

  71. M.K. Chan, R.D. McDonald, B.J. Ramshaw, J.B. Betts, A. Shekhter, E.D. Bauer, N. Harrison, Proc. Natl. Acad. Sci. U.S.A. 117, 9782–9786 (2020)

    Article  Google Scholar 

  72. S. Minwalla, Adv. Theor. Math. Phys. 2(4), 783–851 (1998)

    Article  MathSciNet  Google Scholar 

  73. K. Limtragool, C. Setty, Z. Leong, P.W. Phillips, Phys. Rev. B 94(23), 235121 (2016). https://doi.org/10.1103/PhysRevB.94.235121

    Article  ADS  Google Scholar 

  74. M.C. Cha, G. Ortiz, Phys. Rev. B 77(16), 165124 (2008). https://doi.org/10.1103/PhysRevB.77.165124

    Article  ADS  Google Scholar 

  75. G. Baskaran, Majorana Fermi sea in insulating SmB6: a proposal and a theory of quantum oscillations in Kondo insulators. Invited Talk at the Workshop ‘Concepts and Discovery in Quantum Matter’. Cavendish Laboratory, Cambridge University. arXiv:1507.03477 (2015)

  76. J.T. Heath, K.S. Bedell, J. Phys. A Math. Theor. 52, 315001 (2019). https://doi.org/10.1088/1751-8121/ab2a86

    Article  ADS  Google Scholar 

  77. J. Heath, K. Bedell, Accepted for publication in J. Phys.: Cond. Matter. Preprint arXiv:1903.00619 (2019)

Download references

Acknowledgements

The author thanks Kevin Bedell, Krastan Blagoev, Matthew Gochan, and Kridsanaphong Limtragool for useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshuah T. Heath.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heath, J.T. Landau Quasiparticles in Weak Power-Law Liquids. J Low Temp Phys 201, 200–212 (2020). https://doi.org/10.1007/s10909-020-02515-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02515-1

Keywords

Navigation