Skip to main content
Log in

Tunable Second Harmonic Generation in Antiferromagnetic Photonic Crystal with Graphene

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The generation of second harmonic (SH) in the structure (SiO2/MnF2/graphene)N/ZrO2 has been investigated with the matrix transfer method. The theoretical simulation results show that the effect of the graphene (Gr) on SH outputs above or below the surface is obvious. The SH outputs compared with the same structure only without the Gr layer are greatly enhanced, even about two or three orders at some special cases. Also, the position and intensity of the SH outputs can be effectively tuned by an external magnetic field. An optimal structure is determined through investigating the effect of the Gr positions and dielectrics on the SH outputs. Finally, a critical cycle unit \(N = 8\) is checked out, while the SH outputs begin to decrease once \(N > 8\). These interesting results may be helpful to the development and utilization of nonlinear devices in the THz frequency field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F. Bonaccorso, Z. Sun, T. Hasan et al., Graphene photonics and optoelectronics. Nat. Photon. 4(9), 611–622 (2010)

    ADS  Google Scholar 

  2. Q. Bao, K.P. Loh, Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6(5), 3677–3694 (2012)

    Google Scholar 

  3. K.S. Novoselov, V.I. Falko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene. Nature 490, 192–200 (2012)

    ADS  Google Scholar 

  4. A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009)

    ADS  Google Scholar 

  5. M. Jablan, H. Buljan, M. Soljačić, Plasmonics in graphene at infra-red frequencies. Phys. Rev. B 80(24), 308–310 (2009)

    Google Scholar 

  6. I. Crassee, M. Orlita, M. Potemski, A.L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, A.B. Kuzmenko, Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene. Nano Lett. 12(5), 2470–2474 (2012)

    ADS  Google Scholar 

  7. H.J. Li, L.L. Wang, J.Q. Liu, Z.R. Huang, B. Sun, X. Zhai, Investigation of the graphene based planar plasmonic filters. Appl. Phys. Lett. 103(21), 211104 (2013)

    ADS  Google Scholar 

  8. H. Nasari, M.S. Abrishamian, Electrically tunable graded index planar lens based on graphene. J. Appl. Phys. 116(8), 083106 (2014)

    ADS  Google Scholar 

  9. H. Nasari, M.S. Abrishamian, Magnetically tunable focusing in a graded index planar lens based on graphene. J. Opt. 16(10), 105502 (2014)

    ADS  Google Scholar 

  10. D.R. Andersen, Graphene-based long-wave infrared TM surface plasmon modulator. J. Opt. Soc. Am. B 27(4), 818–823 (2010)

    ADS  Google Scholar 

  11. D. Macneil et al., Gigahertz frequency antiferromagnetic resonance and strong magnon–magnon coupling in the layered crystal CrCl3. Appl. Rev. Lett. 123, 047204 (2019)

    ADS  Google Scholar 

  12. S.Y. Xiao et al., Strong interaction between graphene layer and Fano resonance in terahertz metamaterials. J. Phys. D Appl. Phys. 50(19), 195101 (2017)

    ADS  Google Scholar 

  13. Y. Mukai et al., Nonlinear magnetization dynamics of antiferromagnetic spin resonance induced by intense terahertz magnetic field. New J. Phys. 18(1), 013045 (2016)

    ADS  Google Scholar 

  14. M. Mansuripur, The Principles of Magneto-Optical Recording (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  15. K.H. Chung, T. Kato, S. Mito, H. Takagi, M. Inoue, Fabrication and characteristics of one-dimensional magnetophotonic crystals for magneto-optic spatial light phase modulators. J. Appl. Phys. 107, 09A930 (2010)

    Google Scholar 

  16. X.Z. Wang, Y. Zhao, High Faraday effect of antiferromagnetic/ion-crystal photonic crystals in far infrared region. J. Appl. Phys. 113, 023501 (2013)

    ADS  Google Scholar 

  17. R. Zhu, S. Fu, H. Peng, Far infrared Faraday rotation effect in one-dimensional microcavity type magnetic photonic crystals. J. Magn. Magn. Mater. 323(1), 144–148 (2011)

    ADS  Google Scholar 

  18. A.H. Reshak, M.A. Nada, B. Jiri, Noncentrosymmetric sulfide oxide MZnSO (M = Ca or Sr) with strongly polar structure as novel nonlinear Crystals. J. Phys. Chem. C 123, 27172–27180 (2019)

    Google Scholar 

  19. R. Mahiaouic, T. Ouahranib, A. Chikhaouia, A. Morales-Garcíad, A.H. Reshak, Electronic, bonding, linear, and nonlinear optical properties of Na2MGe2Q6 (M = Cd, Zn, Hg; Q = S, Se), Na2ZnSi2S6, and Na2ZnSn2S6 two metal-mixed chalcogenide compounds: Insights from an ab initio study. J. Phys. Chem. Solids 119, 220–227 (2018)

    ADS  Google Scholar 

  20. A.H. Reshak, S. Auluckc, The influence of oxygen vacancies on the linear and nonlinear optical properties of Pb7O(OH)3(CO3)3(BO3). RSC Adv. 7, 14752–14760 (2017)

    Google Scholar 

  21. A.H. Reshak, Novel borate CsZn2B3O7 single crystal with large efficient second harmonic generation in deep-ultraviolet spectral range. J. Alloys Compd. 722, 438–444 (2017)

    Google Scholar 

  22. S. Zhou, Y. Gao, S.F. Fu, Giant Faraday rotation in graphene/MnF2 photonic crystals. Eur. Phys. J. B 91, 41 (2018)

    ADS  Google Scholar 

  23. M. Fiebig, D. Frohlich, T. Lottermoser, R.V. Pisarev, H.J. Weber, Second harmonic generation in the centrosymmetric antiferromagnet NiO. Phys. Rev. Lett. 87, 137202 (2001)

    ADS  Google Scholar 

  24. A. Ivan, S. Richard, Phase-matched sum frequency generation instrained silicon waveguides using their second order nonlinear optical susceptibility. Opt. Express 19(22), 21707–21716 (2011)

    Google Scholar 

  25. M. Fiebig, D. Frohlich, B.B. Krichevtsov, R.V. Pisarev, Second harmonic generation and magnetic-dipole–electric-dipole interference in antiferromagnetic Cr2O3. Phys. Rev. Lett. 73, 2127–2130 (1994)

    ADS  Google Scholar 

  26. S.F. Fu, S. Zhou, H. Liang, X.Z. Wang, Phase-matched sum frequency generation of antiferromagnetic film in THz frequency field. J. Magn. Magn. Mater. 346, 178–185 (2013)

    ADS  Google Scholar 

  27. N.S. Almeida, D.L. Mills, Nonlinear infrared response of antiferromagnets. Phys. Rev. B 36, 2015–2023 (1987)

    ADS  Google Scholar 

  28. L. Kahn, N.S. Almeida, D.L. Mills, Nonlinear optical response of antiferromagnetic superlattices: multi-stability and soliton trains. Phys. Rev. B 37, 8072–8081 (1988)

    ADS  Google Scholar 

  29. S. Zhou, H. Li, S.-F. Fu, X.-Z. Wang, Second harmonic generation from antiferromagnetic film in one-dimensional photonic crystals. Phys. Rev. B 80, 205409 (2009)

    ADS  Google Scholar 

  30. S.C. Lim, Second harmonic generation of magnetic and dielectric multilayers. J. Phys. Condens. Matter 18, 4329–4343 (2006)

    ADS  Google Scholar 

  31. A.A. Rzhevsky, B.B. Krichevtsov, D.E. Bürgler, C.M. Schneider, Interfacial magnetization in exchange-coupled Fe/Cr/Fe structures investigated by second harmonic generation. Phys. Rev. B 75, 144416 (2007)

    ADS  Google Scholar 

  32. M. Fiebig, V.V. Pavlov, R.V. Pisarev, Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals. J. Opt. Soc. Am. B 22, 96–118 (2005)

    ADS  Google Scholar 

  33. B. Lu, S. Zhou, Y.L. Song et al., Enhancement of second harmonic generation in MnF2/graphene sandwich structure. Appl. Phys. A 125, 254 (2019)

    ADS  Google Scholar 

  34. Y. Zhang, Y. Feng, B. Zhu, J. Zhao, T. Jiang, Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency. Opt. Express 22, 22743–22752 (2014)

    ADS  Google Scholar 

  35. S.V. Kryuchkov, E.I. Kukhar, Influence of the magnetic field on the graphene conductivity. J. Mod. Phys. 3, 994–1001 (2012)

    Google Scholar 

  36. S. Zhou, Magneto-optical nonlinearity of Antiferrromagnet/Dielectric systems (Ph.D. dissertation) (Harbin: Harbin University of Science and Technology) (2010)

  37. A.H. Reshak, Antiferromagnetic CaCoSO Single Crystal. Sci. Rep. 7, 46415 (2017)

    ADS  Google Scholar 

  38. A.H. Reshak, Ab initio study of TaON, an active photocatalyst under visible light irradiation. Phys. Chem. Chem. Phys. 16, 10558–10565 (2014)

    Google Scholar 

  39. G.E. Davydyuk, O.Y. Khyzhun, A.H. Reshak, H. Kamarudin et al., Photoelectrical properties and the electronic structure of Tl1–xIn1–xSnxSe2 (x = 0, 0.1, 0.2, 0.25) single crystalline alloys. Phys. Chem. Chem. Phys. 15, 6965–6972 (2013)

    Google Scholar 

  40. A.H. Reshak, Y.M. Kogut, A.O. Fedorchuk et al., Linear, non-linear optical susceptibilities and the hyperpolarizability of the mixed crystals Ag0.5Pb1.75Ge(S1–xSex)4: experiment and theory. Phys. Chem. Chem. Phys. 15, 18979–18986 (2013)

    Google Scholar 

  41. A.H. Reshak, D. Stys, S. Auluck, I.V. Kityk, Dispersion of linear and nonlinear optical susceptibilities and the hyperpolarizability of 3-methyl-4-phenyl-5-(2-pyridyl)-1,2,4-triazole. Phys. Chem. Chem. Phys. 13, 2945–2952 (2011)

    Google Scholar 

  42. A.H. Reshak, Fe2 MnSix Ge1x : influence thermoelectric properties of varying the germanium content. RSC Adv. 4(74), 39565–39571 (2014)

    Google Scholar 

  43. A.H. Reshak, Hermoelectric properties for AA- and AB-stacking of a carbon nitride polymorph (C3N4). RSC Adv. 4(108), 63137–63142 (2014)

    Google Scholar 

Download references

Acknowledgements

Supported by Natural Foundation of Heilongjiang Province of China LH2019A028 and by Harbin University Doctoral Fund through Grant HUDF2016-002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shufang Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

$$\begin{aligned} \chi_{xxz}^{(2)} (\omega_{s} ) & = \chi_{xzx}^{(2)} (\omega_{s} ) = \chi_{yyz}^{(2)} (\omega_{s} ) = \chi_{yzy}^{(2)} (\omega_{s} ) = AB\omega_{m}^{2} \omega_{0} \{ \omega^{\prime}_{a} Z_{ - - } (\omega )Z_{ - + } (\omega_{s} ) \\ & \quad + \omega^{\prime\prime}_{a} Z_{ - + } (\omega )Z_{ - - } (\omega_{s} ) + 4\omega^{2} [\omega^{\prime}_{a} Z_{ + - } (\omega_{s} ) + \omega^{\prime\prime}_{a} Z_{ + - } (\omega )]\} /M_{0} , \\ \end{aligned}$$
(A1)
$$\begin{aligned} \chi_{xyz}^{(2)} (\omega_{s} ) & = \chi_{xzy}^{(2)} (\omega_{s} ) = - \chi_{yxz}^{(2)} (\omega_{s} ) = - \chi_{yzx}^{(2)} (\omega_{s} ) = - iAB\omega \omega_{m}^{2} \{ 2\omega_{0}^{2} [\omega^{\prime}_{a} Z_{ - + } (\omega_{s} ) \\ & \quad + 2\omega^{\prime\prime}_{a} Z_{ - + } (\omega )] + \omega^{\prime\prime}_{a} Z_{ + - } (\omega )Z_{ - - } (\omega_{s} ) + 2\omega^{\prime}_{a} Z_{ - - } (\omega )Z_{ + - } (\omega_{s} )\} /M_{0} , \\ \end{aligned}$$
(A2)
$$\chi_{zxx}^{(2)} (\omega_{s} ) = \chi_{zyy}^{(2)} (\omega_{s} ) = 2A\omega_{m}^{2} \omega^{\prime}_{a} \omega_{0} /M_{0} .$$
(A3)

where

$$\begin{aligned} \omega^{\prime}_{a} = \omega_{a} + i\omega \tau,\quad \omega^{\prime\prime}_{a} = \omega_{a} + i\omega_{s} \tau,\quad \omega^{\prime\prime 2}_{r} = \omega^{\prime\prime}_{a} (\omega^{\prime\prime}_{a} + 2\omega_{e}),\quad \omega^{\prime 2}_{r} = \omega^{\prime}_{a} (\omega^{\prime}_{a} + 2\omega_{e}), \quad \omega_{m} = \gamma M_{0},\quad \omega_{a} = \gamma H_{a},\quad \omega_{0} = \gamma H_{0},\quad Z_{\pm \pm} (\omega) = \omega^{\prime 2}_{r} \pm \omega_{0}^{2} \pm \omega^{2}, \quad Z_{\pm \pm} (\omega_{s}) = \omega^{\prime\prime 2}_{r} \pm \omega_{0}^{2} \pm \omega_{s}^{2},\quad A = 1/[\omega^{\prime 2}_{r} - (\omega + \omega_{0})^{2}][\omega^{\prime 2}_{r} - (\omega - \omega_{0})^{2}], \quad B = 1/[\omega^{\prime\prime 2}_{r} - (\omega_{s} + \omega_{0})^{2}][\omega^{\prime\prime 2}_{r} - (\omega_{s} - \omega_{0})^{2}]. \\ \end{aligned}$$

The detail of the derivation of SH magnetic permeability can be referred the doctoral thesis of Zhou [36].

Appendix 2

2.1 Linear Transfer Matrix

The matrix between the above film and 1-layer

$$T_{t1} = \frac{1}{2}\left( {\begin{array}{*{20}c} {1 + \varGamma_{t1} } & {1 - \varGamma_{t1} } & 0 & 0 \\ {1 - \varGamma_{t1} } & {1 + \varGamma_{t1} } & 0 & 0 \\ 0 & 0 & {1 + \delta_{t1} } & {1 - \delta_{t1} } \\ 0 & 0 & {1 - \delta_{t1} } & {1 + \delta_{t1} } \\ \end{array} } \right),$$
(B1)

with \(\delta_{t1} = \varepsilon_{t} k_{1z} /\varepsilon_{1} k_{tz}\), \(\varGamma_{t1} = \varepsilon_{t} (k_{x} \lambda_{t1} - k_{1z} )/\varepsilon_{1} (k_{x} \lambda_{tt} - k_{tz} )\), \(\lambda_{tt} = - k_{x} /k_{tz}\) and \(\lambda_{tj} = - k_{x} /k_{jz} (j = 1,2)\).

The matrix for the relation between 1-layer with the AFF

$$T_{1a} = \frac{1}{2}\left( {\begin{array}{*{20}c} {\delta_{1}^{ - 1} (1 + \varGamma_{11} )} & {\delta_{1}^{ - 1} (1 - \varGamma_{11} )} & {\delta_{1}^{ - 1} (1 + \varGamma_{12} )} & {\delta_{1}^{ - 1} (1 - \varGamma_{12} )} \\ {\delta_{1}^{{}} (1 - \varGamma_{11} )} & {\delta_{1}^{{}} (1 + \varGamma_{11} )} & {\delta_{1}^{{}} (1 - \varGamma_{12} )} & {\delta_{1}^{{}} (1 + \varGamma_{12} )} \\ {\delta_{1}^{ - 1} \beta_{1} (1 + \Delta_{11} )} & {\delta_{1}^{ - 1} \beta_{1} (1 - \Delta_{11} )} & {\delta_{1}^{ - 1} \beta_{2} (1 + \Delta_{12} )} & {\delta_{1}^{ - 1} \beta_{2} (1 - \Delta_{12} )} \\ {\delta_{1}^{{}} \beta_{1} (1 - \Delta_{11} )} & {\delta_{1}^{{}} \beta_{1} (1 + \Delta_{11} )} & {\delta_{1}^{{}} \beta_{2} (1 - \Delta_{12} )} & {\delta_{1}^{{}} \beta_{2} (1 + \Delta_{12} )} \\ \end{array} } \right),$$
(B2)

with \(\Delta_{jl} = \varepsilon_{j} k_{l} /\varepsilon_{a} k_{jz}\), \(\delta_{{_{1} }}^{ \pm } { = }\exp ( \pm {\text{ik}}_{1z} {\text{d}}_{1} )\), \(\varGamma_{jl} = \varepsilon_{j} (k_{x} \lambda_{l} - k_{l} )/(k_{x} \lambda_{tj} - k_{jz} )\)\(\left( {l = 1,2} \right)\).

The matrix for the relation between the AFF with j-layer through the Gr

$$T_{agj} = \left( {\begin{array}{*{20}c} {\delta_{a1}^{ - 1} [\varphi_{j1}^{ - } - \beta_{2} (\varLambda_{\beta } - \varLambda_{j} \Delta_{j2} )]} & {\delta_{a1}^{ - 1} [\varphi_{j1}^{ + } - \beta_{2} (\varLambda_{\beta } + \varLambda_{j} \Delta_{j2} )]} & {\delta_{a1}^{ - 1} (\eta_{j1}^{ + } + \varLambda_{\beta } - \varLambda_{j} \varGamma_{j2} )} & {\delta_{a1}^{ - 1} (\eta_{j1}^{ - } + \varLambda_{\beta } + \varLambda_{j} \varGamma_{j2} )} \\ {\delta_{a1} (\varphi_{j1}^{ - } - \beta_{2} \varLambda_{\beta } )} & {\delta_{a1} (\varphi_{j1}^{ + } - \beta_{2} \varLambda_{\beta } )} & {\delta_{a1} (\eta_{j1}^{ + } + \varLambda_{\beta } )} & {\delta_{a1} (\eta_{j1}^{ - } + \varLambda_{\beta } )} \\ {\delta_{a2}^{ - 1} [\varphi_{j2}^{ - } + \beta_{1} (\varLambda_{\beta } - \varLambda_{j} \Delta_{j1} )]} & {\delta_{a2}^{ - 1} [\varphi_{j2}^{ + } + \beta_{1} (\varLambda_{\beta } + \varLambda_{j} \Delta_{j1} )]} & {\delta_{a2}^{ - 1} (\eta_{j2}^{ + } - \varLambda_{\beta } + \varLambda_{j} \varGamma_{j1} )} & {\delta_{a2}^{ - 1} (\eta_{j2}^{ - } - \varLambda_{\beta } - \varLambda_{j} \varGamma_{j1} )} \\ {\delta_{a2} (\varphi_{j2}^{ - } + \varLambda_{\beta } \beta_{1} )} & {\delta_{a2} (\varphi_{j2}^{ + } + \varLambda_{\beta } \beta_{1} )} & {\delta_{a2} (\eta_{j2}^{ + } - \varLambda_{\beta } )} & {\delta_{a2} (\eta_{j2}^{ - } - \varLambda_{\beta } )} \\ \end{array} } \right).$$
(B3)

where \(\delta_{{_{al} }}^{ \pm } = \exp ( \pm ik_{l} d_{a} )\), \(\eta_{jm}^{ \pm } = \pm \varLambda_{\beta } S_{l} \varLambda_{j} \varGamma_{jm} \mp \varLambda_{\beta } G_{m} \varLambda_{j} \varGamma_{jl}\),\(\varphi_{jm}^{ \pm } = \varLambda_{\beta } [ \pm S_{l} \varLambda_{j} \Delta_{jm} \beta_{m} \mp G_{m} \varLambda_{j} \Delta_{jl} \beta_{l} ]\), \(\varLambda_{\beta } = 1/2(\beta_{1} - \beta_{2} )\), \(\varLambda_{j} = 1/[2(\varGamma_{j1} \Delta_{j2} \beta_{2} - \varGamma_{j2} \Delta_{j1} \beta_{1} )]\), also \(S_{l} = A_{l} (\beta_{l} \sigma_{yx} + \sigma_{xx} ) + B_{l} (\beta_{l} \sigma_{yy} + \sigma_{xy} )\),\(G_{l} = \beta_{m} - \beta_{l} + A_{l} (\beta_{m} \sigma_{yx} + \sigma_{xx} ) + B_{l} (\beta_{m} \sigma_{yy} + \sigma_{xy} )\), \(A_{l} = k_{l} \beta_{l} /\varepsilon_{a} \omega\), \(B_{l} = (k_{x} \lambda_{l} - k_{l} )/\varepsilon_{a} \omega\) (\(j = l = m = 1,2\) and \(l \ne m\)).

The matrix for the relation between the 2-layer and the bottom

$$T_{2b} = \frac{1}{2}\left( {\begin{array}{*{20}c} {(1 + \varGamma_{2b} )\delta_{2}^{ - 1} } & 0 & 0 & 0 \\ 0 & {(1 - \varGamma_{2b} )\delta_{2} } & 0 & 0 \\ 0 & 0 & {(1 + \delta_{2b} )\delta_{2}^{ - 1} } & 0 \\ 0 & 0 & 0 & {(1 - \delta_{2b} )\delta_{2} } \\ \end{array} } \right).$$
(B4)

where \(\delta_{{_{2} }}^{ \pm } = \exp ( \pm ik_{2z} d_{2} )\), \(\varGamma_{2b} = \varepsilon_{2} (k_{x} \lambda_{tb} - k_{bz} )/\varepsilon_{b} (k_{x} \lambda_{2} - k_{2z} )\), \(\delta_{2b} = \varepsilon_{2} k_{bz} /\varepsilon_{b} k_{2z}\), \(\lambda_{tb} = - k_{x} /k_{bz}\).

2.2 Nonlinear Transfer Matrix

The nonlinear matrix equation between the AF film and the 1-layer above it is

$$M^{\prime}_{1a} = \frac{1}{2}\left( {\begin{array}{*{20}c} {\delta_{s1}^{ - 1} [f_{x}^{h} (0) + \Delta^{\prime}_{s1} f_{y}^{e} (0)]} \\ {\delta_{s1}^{{}} [f_{x}^{h} (0) - \Delta^{\prime}_{s1} f_{y}^{e} (0)]} \\ {\delta_{s1}^{ - 1} [f_{y}^{h} (0) + \Delta_{s1} f_{x}^{e} (0)]} \\ {\delta_{s1}^{{}} [f_{y}^{h} (0) - \Delta_{s1} f_{x}^{e} (0)]} \\ \end{array} } \right),$$
(B5)

with \(\delta_{{_{sj} }}^{ \pm } = \exp ( \pm ik_{sjz} d_{j} )\), \(\Delta_{sj} = \varepsilon_{j} /\varepsilon_{a} k_{sjz}\), \(\Delta^{\prime}_{sj} = \varepsilon_{j} /\varepsilon_{a} (k_{sx} \lambda_{stj} - k_{sjz} )\)\((j = 1,2)\).

The nonlinear matrix equation between the AFF and the 2-layer blow through the Gr is

$$ M^{\prime}_{agj} = \left( {\begin{array}{*{20}l} {\delta_{sa1}^{ - 1} [\varLambda_{s\beta } \beta_{s2} f_{x}^{h} (l) + (\varPhi_{j1}^{\prime - } - \varLambda_{sj} \Delta_{sj2} \beta_{s2} \Delta^{\prime}_{sj} )f_{y}^{e} (l) - \varLambda_{s\beta } f_{y}^{h} (l) - (\varPhi_{j1}^{ - } - \varLambda_{sj} \varGamma_{sj2} \Delta_{sj} )f_{x}^{e} (l)]} \hfill \\ {\delta_{sa1}^{ - 1} [\varLambda_{s\beta } \beta_{s2} f_{x}^{h} (l) + \varPhi_{j1}^{\prime - } f_{y}^{e} (l) - \varLambda_{s\beta } f_{y}^{h} (l) - \varPhi_{j1}^{ - } f_{x}^{e} (l)]} \hfill \\ {\delta_{sa2}^{ - 1} [ - \varLambda_{s\beta } \beta_{s1} f_{x}^{h} (l) - (\varPhi_{j2}^{\prime + } - \varLambda_{sj} \Delta_{sj1} \beta_{s1} \Delta^{\prime}_{sj} )f_{y}^{e} (l) + \varLambda_{s\beta } f_{y}^{h} (l) + (\varPhi_{j2}^{ + } - \varLambda_{sj} \varGamma_{sj1} \Delta_{sj} )f_{x}^{e} (l)]} \hfill \\ { - \delta_{sa2}^{ - 1} [ - \varLambda_{s\beta } \beta_{s1} f_{x}^{h} (l) - \varPhi_{j2}^{\prime + } f_{y}^{e} (l) + \varLambda_{s\beta } f_{y}^{h} (l) + \varPhi_{j2}^{ + } f_{x}^{e} (l)]} \hfill \\ \end{array} } \right).$$
(B6)

where \(\varPhi^{\prime \pm }_{jl} = \varLambda_{s\beta } ( \pm G_{sl} \varLambda_{sj} \Delta_{sjm} \beta_{sm} \Delta^{\prime}_{sj} \mp S_{sm} \varLambda_{sj} \Delta_{sjl} \beta_{sl} \Delta^{\prime}_{sj} + K^{\prime}_{sm} )\), \(K_{l} = (\beta_{sl} \sigma_{yx} + \sigma_{xx} )/\varepsilon_{a} \omega\), \(\varPhi_{jl}^{ \pm } = \varLambda_{s\beta } ( \pm G_{sl} \varLambda_{sj} \varGamma_{sjm} \Delta_{sj} \mp S_{sm} \varLambda_{sj} \varGamma_{sjl} \Delta_{sj} - K_{sm} )\), \(K^{\prime}_{l} = (\beta_{sl} \sigma_{yy} + \sigma_{xy} )/\varepsilon_{a} \omega\).

The other transfer matrix for the SH generation can be got from the linear case by using \(\omega_{s} = 2\omega\) since the second-order nonlinear response only is excited in the AFF film.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, B., Zhou, S., Liang, H. et al. Tunable Second Harmonic Generation in Antiferromagnetic Photonic Crystal with Graphene. J Low Temp Phys 201, 321–339 (2020). https://doi.org/10.1007/s10909-020-02500-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02500-8

Keywords

PACS

Navigation