Skip to main content
Log in

Pulse Response of a Kinetic Inductance Detector in the Nonlinear Regime

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Over the last few years, kinetic inductance detectors (KIDs) became the object of increasing interest as photon and phonon detectors. From this perspective, the pulse response of such detectors deserves an in-depth study. In most applications, the sensitivity of the KID is ultimately limited by the white noise from the cryogenic amplifier, which is reduced by increasing the power supplied to the device. On the other hand, a high readout power leads to a nonlinear response of the microresonator, originating from the dependence on the current acquired by the kinetic inductance. This paper describes a model for the response to optical pulses of a KID driven to the nonlinear regime, taking into account not only the electrical effects but also the thermal ones induced by power absorption. The model has been validated on data collected using an aluminium resonator developed within the CALDER project (http://www.roma1.infn.it/exp/calder/).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Eq. 2 is derived by converting in phase variation the frequency variation that can be found in Ref. [1]

References

  1. L.J. Swenson, P.K. Day, B.H. Eom, H.G. Leduc, N. Llombart, C.M. McKenney, O. Noroozian, J. Zmuidzinas, J. Appl. Phys. 113, 104501 (2013). https://doi.org/10.1063/1.4794808

    Article  ADS  Google Scholar 

  2. J. Zmuidzinas, Annu. Rev. Condens. Matter Phys. 3, 52–92 (2012). https://doi.org/10.1146/annurev-conmatphys-020911-125022

    Article  Google Scholar 

  3. P.J. de Visser, S. Withington, D.J. Goldie, J. Appl. Phys. 108(11), 114504 (2010). https://doi.org/10.1063/1.3517152

    Article  ADS  Google Scholar 

  4. S.B. Kaplan, C.C. Chi, D.N. Langenberg, J.J. Chang, S. Jafarey, D.J. Scalapino, Phys. Rev. B 14, 4854 (1976). https://doi.org/10.1103/PhysRevB.14.4854

    Article  ADS  Google Scholar 

  5. L. Cardani, N. Casali, I. Colantoni, A. Cruciani, F. Bellini, M.G. Castellano, C. Cosmelli, A. D’Addabbo, S. Di Domizio, M. Martinez, C. Tomei, M. Vignati, Appl. Phys. Lett. 110, 033504 (2017). https://doi.org/10.1063/1.4974082

    Article  ADS  Google Scholar 

  6. N. Casali, F. Bellini, L. Cardani, M.G. Castellano, I. Colantoni, A. Coppolecchia, C. Cosmelli, A. Cruciani, A. D’Addabbo, S. Di Domizio, M. Martinez, C. Tomei, M. Vignati, J. Low Temp. Phys. 184, 142–147 (2016). https://doi.org/10.1007/s10909-015-1358-y

    Article  ADS  Google Scholar 

  7. L. Cardani, I. Colantoni, A. Cruciani, S. Di Domizio, M. Vignati, F. Bellini, N. Casali, M.G. Castellano, A. Coppolecchia, C. Cosmelli, C. Tomei, Appl. Phys. Lett. 107, 093508 (2015). https://doi.org/10.1063/1.4929977

    Article  ADS  Google Scholar 

  8. R. Barends, J.J.A. Baselmans, S.J.C. Yates, J.R. Gao, J.N. Hovenier, T.M. Kaplapwijk, Phys. Rev. Lett. 100, 257002 (2008). https://doi.org/10.1103/PhysRevLett.100.257002

    Article  ADS  Google Scholar 

  9. J. Gao, J. Zmuidzinas, B.A. Mazin, P.K. Day, H.G. Leduc, Nucl. Instr. Meth. Phys. Res. A 559, 799–801 (2006). https://doi.org/10.1016/j.nima.2005.12.075

    Article  ADS  Google Scholar 

  10. J. Gao, The Physics of Superconducting Microwave Resonators, PhD thesis, California Institute of Technology (2008)

  11. M. Vignati, F. Bellini, L. Cardani, N. Casali, M.G. Castellano, I. Colantoni, A. Coppolecchia, C. Cosmelli, A. Cruciani, A. D’Addabbo, S. Di Domizio, M. Martinez, C. Tomei, Eur. Phys. J. C 75, 353 (2015). https://doi.org/10.1140/epjc/s10052-015-3575-6

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Loren J. Swenson for useful discussions on the kinetic inductance behaviour. This work was supported by the European Research Council (FP7/2007-2013) under Contract CALDER No. 335359.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Bellenghi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellenghi, C., Cardani, L., Casali, N. et al. Pulse Response of a Kinetic Inductance Detector in the Nonlinear Regime. J Low Temp Phys 199, 639–645 (2020). https://doi.org/10.1007/s10909-020-02437-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02437-y

Keywords

Navigation