Skip to main content
Log in

Properties of a Nanowire Kinetic Inductance Detector Array

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this paper, we report on the preliminary results of a nanowire kinetic inductance detector, a device which operates as both a standard kinetic inductance detector (KID) and a superconducting nanowire single-photon detector (SNSPD). The device consists of an array of detectors, each with a characteristic resonant frequency which can be readout and distinguished on a single transmission line. We demonstrate, due to the nanowire’s small volume, a higher responsivity when operating as a KID under optical loading. Operating the device as an SNSPD, we show the sinusoidal pulse generated from an absorbed photon. Multiple detectors can be struck simultaneously while maintaining the capability to distinguish each pixel. Preliminary results show a variation in count rates among the array, and sources are discussed in the text.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. http://thz.asu.edu/products.html.

References

  1. J. Delabrouille, P. de Bernardis, F. Bouchet, A. Achúcarro, P.A.R. Ade, R. Allison et al., J. Cosmol. Astropart. Phys. 2018, 014 (2018). https://doi.org/10.1088/1475-7516/2018/04/014

    Article  Google Scholar 

  2. J.E. Austermann, J.A. Beall, S.A. Bryan, B. Dober, J. Gao, G. Hilton et al., J. Low Temp. Phys. 193, 120 (2018)

    Article  ADS  Google Scholar 

  3. R. Adam, A. Adane, P.A.R. Ade, P. André, A. Andrianasolo, H. Aussel et al., Astron. Astrophys. 609, A115 (2018)

    Article  Google Scholar 

  4. N.P. Lourie, P.A.R. Ade, F.E. Angile, P.C. Ashton, J.E. Austermann, M.J. Devlin et al., Proc. SPIE 10708, 107080L (2018). https://doi.org/10.1117/12.2314396

    Article  Google Scholar 

  5. M.J. Stevens, R.H. Hadfield, R.E. Schwall, S.W. Nam, R.P. Mirin, J.A. Gupta, Appl. Phys. Lett. 89, 031109 (2006). https://doi.org/10.1063/1.2221516

    Article  ADS  Google Scholar 

  6. S. Miki, H. Terai, T. Yamashita, K. Makise, M. Fujiwara, M. Sasaki, Z. Wang, Appl. Phys. Lett. 99, 111108 (2011). https://doi.org/10.1063/1.3640503

    Article  ADS  Google Scholar 

  7. F. Marsili, V.B. Verma, J.A. Stern, S. Harrington, A.E. Lita, T. Gerrits, S.W. Nam, Nat. Photonics 7, 210 (2013)

    Article  ADS  Google Scholar 

  8. K. Smirnov, A. Divochiy, Y. Vakhtomin, P. Morozov, P. Zolotov, A. Antipov, V. Seleznev, Supercond. Sci. Technol. 31, 035011 (2018)

    Article  ADS  Google Scholar 

  9. W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Xie, Sci. China Phys. Mech. 60, 120314 (2017)

    Article  Google Scholar 

  10. I. Holzman, Y. Ivry, Adv. Quantum Technol. 2, 1800058 (2019). https://doi.org/10.1002/qute.201800058

    Article  Google Scholar 

  11. A.K. Sinclair, E. Schroeder, D. Zhu, M. Colangelo, J. Glasby, P.D. Mauskopf, H. Mani, K.K. Berggren, IEEE Trans. Appl. Supercond. 29, 1–4 (2019). https://doi.org/10.1109/TASC.2019.2899329

    Article  Google Scholar 

  12. N. Calandri, Q.Y. Zhao, D. Zhu, A. Dane, K.K. Berggren, Appl. Phys. Lett. 109, 152601 (2016). https://doi.org/10.1063/1.4963158

    Article  ADS  Google Scholar 

  13. B.A. Korzh, Q.Y. Zhao, S. Frasca et al., arXiv preprint, arXiv:1804.06839 (2018)

  14. J. Zmuidzinas, Annu. Rev. Condens. Matter Phys. 3, 169–214 (2012). https://doi.org/10.1146/annurev-conmatphys-020911-125022

    Article  Google Scholar 

  15. P.D. Mauskopf, Publ. Astron. Soc. Pac. 130, 082001 (2018)

    Article  ADS  Google Scholar 

  16. A.J. Annunziata, D.F. Santavicca, L. Frunzio, G. Catelani, M.J. Rooks, A. Frydman, D.E. Prober, Nanotechnology 21, 445202 (2010)

    Article  Google Scholar 

  17. J.K. Yang, A.J. Kerman, E.A. Dauler, V. Anant, K.M. Rosfjord, K.K. Berggren, IEEE Trans. Appl. Supercond. 17, 581 (2007)

    Article  ADS  Google Scholar 

  18. C.M. Natarajan, M.G. Tanner, R.H. Hadfield, Supercond. Sci. Technol. 25, 063001 (2012)

    Article  ADS  Google Scholar 

  19. S. Doyle, P.D. Mauskopf, J. Naylon, A. Porch, C. Duncombe, J. Low Temp. Phys. 151, 530–536 (2008). https://doi.org/10.1007/s10909-007-9685-2

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Glasby.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glasby, J.S., Sinclair, A.K., Mauskopf, P.D. et al. Properties of a Nanowire Kinetic Inductance Detector Array. J Low Temp Phys 199, 631–638 (2020). https://doi.org/10.1007/s10909-019-02288-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02288-2

Keywords

Navigation