Skip to main content
Log in

Terahertz superconducting kinetic inductance detectors demonstrating photon-noise-limited performance and intrinsic generation-recombination noise

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The development of large-format detector arrays with background-limited performance is of particular interest at the terahertz (THz) band, which is a unique band in search of our cosmic origins. With high sensitivity and being more promising in the pixel number and multiplexing technology, superconducting kinetic inductance detectors (KID) are emerging as a major choice of detectors of this type. Here we fabricate three-THz-band (0.35/0.85/1.4 THz) KIDs on a single chip from a 120-nm-thick aluminum (Al) superconducting film and measure photon-noise-limited performance and intrinsic generation-recombination noise at high (>1 pW) and low (<1 fW) optical radiation power, respectively. Their responses to blackbody (optical) radiation are proven to be purely from photons compared with the responses of two dark KIDs intentionally arranged on the same detector chip. The lowest optical noise equivalent power (NEP) reaches 6×10−18 W/Hz0.5 and the optical coupling efficiency is in the range of 49%–56% for the three KIDs, which are in good agreement with the simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. K. Walker, Terahertz Astronomy (CRC Press, Boca Raton, 2015).

    Book  Google Scholar 

  2. K. D. Irwin, and C. H. Gene, Transition-Edge Sensors (Springer, Berlin, 2005).

    Book  Google Scholar 

  3. P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuid-zinas, Nature 425, 6960 (2003).

    Article  Google Scholar 

  4. A. Monfardini, R. Adam, A. Adane, P. Ade, P. André, A. Beelen, B. Belier, A. Benoit, A. Bideaud, N. Billot, O. Bourrion, M. Calvo, A. Catalano, G. Coiffard, B. Comis, A. D’Addabbo, F.-X. Désert, S. Doyle, J. Goupy, C. Kramer, S. Leclercq, J. Macias-Perez, J. Martino, P. Mauskopf, F. Mayet, F. Pajot, E. Pascale, N. Ponthieu, V. Revéret, L. Rodriguez, G. Savini, K. Schuster, A. Sievers, C. Tucker, and R. Zylka, Low Temp. Phys. 176, 5 (2014).

    Google Scholar 

  5. S. C. Shi, S. Paine, Q. J. Yao, Z. H. Lin, X. X. Li, W. Y. Duan, H. Matsuo, Q. Zhang, J. Yang, M. C. B. Ashley, Z. Shang, and Z. W. Hu, Nat. Astron. 1, 0001 (2016).

    Article  Google Scholar 

  6. D. C. Mattis, and J. Bardeen, Phys. Rev. 111, 2 (1958).

    Google Scholar 

  7. M. Dressel, and G. Grüner, Electrodynamics of Solids: Optical Properties of Electrons in Matter (Cambridge University Press, Cambridge, 2002).

    Book  Google Scholar 

  8. J. Zmuidzinas, Annu. Rev. Condens. Matter Phys. 3, 169 (2012).

    Article  Google Scholar 

  9. P. J. de Visser, J. J. A. Baselmans, J. Bueno, N. Llombart, and T. M. Klapwijk, Nat. Commun. 5, 3130 (2014).

    Article  ADS  Google Scholar 

  10. R. W. Boyd, Infrared Phys. 22, 3 (1982).

    Article  Google Scholar 

  11. A. G. Kozorezov, A. F. Volkov, J. K. Wigmore, A. Peacock, A. Poelaert, and R. den Hartog, Phys. Rev. B 61, 11807 (2000).

    Article  ADS  Google Scholar 

  12. P. J. de Visser, J. J. A. Baselmans, P. Diener, S. J. C. Yates, A. Endo, and T. M. Klapwijk, Phys. Rev. Lett. 106, 167004 (2011).

    Article  ADS  Google Scholar 

  13. C. M. Wilson, L. Frunzio, and D. E. Prober, Phys. Rev. Lett. 87, 067004 (2001).

    Article  ADS  Google Scholar 

  14. S. J. C. Yates, J. J. A. Baselmans, A. Endo, R. M. J. Janssen, L. Ferrari, P. Diener, and A. M. Baryshev, Appl. Phys. Lett. 99, 073505 (2011).

    Article  ADS  Google Scholar 

  15. R. M. J. Janssen, J. J. A. Baselmans, A. Endo, L. Ferrari, S. J. C. Yates, A. M. Baryshev, and T. M. Klapwijk, Appl. Phys. Lett. 103, 203503 (2013).

    Article  ADS  Google Scholar 

  16. L. Ferrari, O. Yurduseven, N. Llombart, S. J. Yates, A. M. Baryshev, J. Bueno, and J. J. A. Baselmans, SPIE Proc. 9914, 99142G–6 (2016).

    ADS  Google Scholar 

  17. L. Ferrari, O. Yurduseven, S. J. C. Yates, J. Bueno, V. Murugesan, D. J. Thoen, A. Endo, A. M. Baryshev, and J. J. A. Baselmans, IEEE Trans. Terahertz Sci. Technol. 8, 99 (2018).

    Google Scholar 

  18. J. Hubmayr, J. Beall, D. Becker, H. M. Cho, M. Devlin, B. Dober, C. Groppi, G. C. Hilton, K. D. Irwin, D. Li, P. Mauskopf, D. P. Pappas, J. Van Lanen, M. R. Vissers, Y. Wang, L. F. Wei, and J. Gao, Appl. Phys. Lett. 106, 073505 (2015).

    Article  ADS  Google Scholar 

  19. D. Flanigan, H. McCarrick, G. Jones, B. R. Johnson, M. H. Abitbol, P. Ade, D. Araujo, K. Bradford, R. Cantor, G. Che, P. Day, S. Doyle, C. B. Kjellstrand, H. Leduc, M. Limon, V. Luu, P. Mauskopf, A. Miller, T. Mroczkowski, C. Tucker, and J. Zmuidzinas, Appl. Phys. Lett. 108, 083504 (2016).

    Article  ADS  Google Scholar 

  20. J. Gao, J. Zmuidzinas, A. Vayonakis, P. Day, B. Mazin, and H. Leduc, J. Low Temp. Phys. 151, 1 (2008).

    Article  Google Scholar 

  21. S. Friedrich, K. Segall, M. C. Gaidis, C. M. Wilson, and D. E. Prober, Appl. Phys. Lett. 71, 26 (1997).

    Article  Google Scholar 

  22. S. B. Kaplan, C. C. Chi, D. N. Langenberg, J. J. Chang, S. Jafarey, and D. J. Scalapino, Phys. Rev. B 14, 4854 (1976).

    Article  ADS  Google Scholar 

  23. T. G. Phillips, and J. Keene, IEEE Proc. 80, 11 (1992).

    Article  Google Scholar 

  24. J. Zmuidzinas, and P. L. Richards, IEEE Proc. 92, 10 (2004).

    Article  Google Scholar 

  25. H. Kraus, F. von Feilitzsch, J. Jochum, R. L. Mossbauer, T. Peterreins, and F. Probst, Phys. Lett. B 231, 1 (1989).

    Article  Google Scholar 

  26. J. Jochum, H. Kraus, M. Gutsche, B. Kemmather, F. V. Feilitzsch, and R. L. Mössbauer, Ann. Phys. 505, 7 (1993).

    Article  Google Scholar 

  27. J. Baselmans, S. J. C. Yates, R. Barends, Y. J. Y. Lankwarden, J. R. Gao, H. Hoevers, and T. M. Klapwijk, Low Temp. Phys. 151, 1 (2008).

    Article  Google Scholar 

  28. R. Barends, J. J. A. Baselmans, S. J. C. Yates, J. R. Gao, J. N. Hovenier, and T. M. Klapwijk, Phys. Rev. Lett. 100, 257002 (2008).

    Article  ADS  Google Scholar 

  29. J. J. A. Baselmans, and S. J. C. Yates, AIP Conf. Proc. 1185, 1 (2009).

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11925304, 12020101002, and 11922308), and Chinese Academy of Sciences (CAS) Program (Grant Nos. QYZDJ-SSW-SLH043, GJJSTD20210002, and YJKYYQ20170031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Cai Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Q., Li, J., Zhi, Q. et al. Terahertz superconducting kinetic inductance detectors demonstrating photon-noise-limited performance and intrinsic generation-recombination noise. Sci. China Phys. Mech. Astron. 65, 239511 (2022). https://doi.org/10.1007/s11433-021-1828-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1828-y

PACS number(s)

Navigation