Skip to main content
Log in

Development of a Ti/Au TES Microcalorimeter Array as a Backup Sensor for the Athena/X-IFU Instrument

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We are developing a transition edge sensor (TES) microcalorimeter array based on a Ti/Au superconducting bilayer, as a backup option for the X-IFU instrument on the Athena X-ray observatory. The array is read out by a frequency-division multiplexing readout system using a 1–5 MHz frequency band. Extensive research collaborations between NASA/Goddard and SRON have led to new design rules for microcalorimeters such as low resistivity of the superconductor bilayer, moderately high ohmic resistance of the TES by changing the aspect ratio and no extra metal strips. We have improved our detector fabrication process according to these design principles and produced TES arrays. Although single-pixel characterizations of these arrays are ongoing, the best energy resolution of 2.0 eV for 5.9 keV X-ray has been observed with a 120 × 20 μm2 TES with a normal resistance of 150 mΩ, biased at 2.2 MHz frequency. This shows that our Ti/Au TES array has a potential to fulfill the detector requirements of the X-IFU instrument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. F. Pajot et al., J. Low Temp. Phys. 193, 901 (2018). https://doi.org/10.1007/s10909-018-1904-5

    Article  ADS  Google Scholar 

  2. S.J. Smith et al., Proc. SPIE 9905, 99055S (2016)

    Article  ADS  Google Scholar 

  3. H. Akamatsu et al., Proc. SPIE 10699, 106991N (2018). https://doi.org/10.1117/12.2313284

    Article  Google Scholar 

  4. K. Sakai et al., J. Low Temp. Phys. 193, 356 (2018). https://doi.org/10.1007/s10909-018-2002-4

    Article  ADS  Google Scholar 

  5. L. Gottardi et al., J. Low Temp. Phys. 193, 209 (2018). https://doi.org/10.1007/s10909-018-2006-0

    Article  ADS  Google Scholar 

  6. N.A. Wakeham et al., J. Low Temp. Phys. 193, 231 (2018). https://doi.org/10.1007/s10909-018-1898-z

    Article  ADS  Google Scholar 

  7. E. Taralli et al., J. Low Temp. Phys., This Special Issue (2019)

  8. M.P. Bruijn et al., J. Low Temp. Phys. 184, 369 (2016). https://doi.org/10.1007/s1090

    Article  ADS  Google Scholar 

  9. T.A. Green, Gold Bulletin 47, 205 (2014). https://doi.org/10.1007/s13404-014-0143-z

    Article  Google Scholar 

  10. D. Brown et al., J. Low Temp. Phys. 151, 413 (2008). https://doi.org/10.1007/s10909-007-9669-2

    Article  ADS  Google Scholar 

  11. N.J. van der Heijden et al., J. Low Temp. Phys. 193, 231 (2014). https://doi.org/10.1007/s10909-014-1158-9

    Article  Google Scholar 

  12. G. Holzer et al., Phys. Rev. A 56, 4554 (1997). https://doi.org/10.1103/PhysRevA.56.4554

    Article  ADS  Google Scholar 

  13. P. Khosropanah et al., Proc. SPIE106991M (2018), https://doi.org/10.1117/12.2313439

Download references

Acknowledgements

This work is partly funded by European Space Agency (ESA) and coordinated with other European efforts under ESA CTP contract ITT AO/1-7947/14/NL/BW. It has also received funding from the European Union’s Horizon 2020 Programme under the AHEAD (Activities for the High-Energy Astrophysics Domain) project with Grant Agreement No. 654215. We also thank Kavli Nanolab at TU Delft for making use of the deep RIE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Nagayoshi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagayoshi, K., Ridder, M.L., Bruijn, M.P. et al. Development of a Ti/Au TES Microcalorimeter Array as a Backup Sensor for the Athena/X-IFU Instrument. J Low Temp Phys 199, 943–948 (2020). https://doi.org/10.1007/s10909-019-02282-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02282-8

Keywords

Navigation