Skip to main content
Log in

Characterization of High Aspect-Ratio TiAu TES X-ray Microcalorimeter Array Under AC Bias

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We are developing X-ray microcalorimeters as a backup option for the baseline detectors in the X-IFU instrument on board the ATHENA space mission led by ESA and to be launched in the early 2030s. 5 \(\times \) 5 mixed arrays with TiAu transition-edge sensor (TES), which have different high aspect ratios and thus high resistances, have been designed and fabricated to meet the energy resolution requirement of the X-IFU instrument. Such arrays can also be used to optimize the performance of the frequency domain multiplexing (FDM) readout and lead to the final steps for the fabrication of a large detector array. In this work, we present the experimental results from tens of the devices with an aspect ratio (length-to-width) ranging from 1-to-1 up to 6-to-1, measured in a single-pixel mode with a FDM readout system developed at SRON/VTT. We observed a nominal energy resolution of about 2.5 eV at 5.9 keV at bias frequencies ranging from 1 to 5 MHz. These detectors are proving to be the best TES microcalorimeters ever reported in Europe, intending to meet the requirements of the X-IFU instrument, but also those of other future challenging X-ray space missions, fundamental physics experiments, plasma characterization and material analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F. Pajot, D. Barret, T. Lam-Trong, J.-W. den Herder et al., J. Low Temp. Phys. 193, 901 (2018)

    Article  ADS  Google Scholar 

  2. European Space Agency (ESA), ATHENA Mission Summary, http://sci.esa.int/athena/59896-missionsummary

  3. S.J. Smith, J.S. Adams, S.R. Bandler et al., Proc. SPIE 99055S, (2016). https://doi.org/10.1117/12.2231749

  4. H. Akamatsu, L. Gottardi, J. van der Kuur, C.P. de Vries, M.P. Bruijn, J.A. Chervenak, M. Kiviranta, A.J. van den Linden, B.D. Jackson, A. Miniussi, K. Sakai, S.J. Smith, N.A. Wakeham, Proc. SPIE 106991N (2018). https://doi.org/10.1117/12.2313284

  5. K. Sakai, J.S. Adams, S.R. Bandler, J.A. Chervenak, A.M. Datesman, M.E. Eckart, F.M. Finkbeiner, R.L. Kelley, C.A. Kilbourne, A.R. Miniussi, F.S. Porter, J.S. Sadleir, S.J. Smith, N.A. Wakeham, E.J. Wassell, W. Yoon, H. Akamatsu, M.P. Bruijn, L. Gottardi, B.D. Jackson, J. van der Kuur, B.J. van Leeuwen, A.J. van der Linden, H.J. van Weers, M. Kiviranta, J. Low Temp. Phys. 193, 356 (2018)

    Article  ADS  Google Scholar 

  6. N.A. Wakeham, J.S. Adams, S.R. Bandler, J.A. Chervenak, A.M. Datesman, M.E. Eckart, F.M. Finkbeiner, R.L. Kelley, C.A. Kilbourne, A.R. Miniussi, F.S. Porter, J.E. Sadleir, K. Sakai, S.J. Smith, E.J. Wassell, W. Yoon, J. Low Temp. Phys. 193, 231 (2018)

    Article  ADS  Google Scholar 

  7. E. Taralli, P. Khosropanah, L. Gottardi, K. Nagayoshi, M.L. Ridder, M.P. Bruijn, J.R. Gao, AIP Adv. 9, 045324 (2019). https://doi.org/10.1063/1.5089739

    Article  ADS  Google Scholar 

  8. L. Gottardi, S.J. Smith, A. Kozorezov, H. Akamatsu, J. van der Kuur, S.R. Bandler, M.P. Bruijn, J.A. Chervenak, J.R. Gao, R.H. den Hartog, B.D. Jackson, P. Khosropanah, A. Miniussi, K. Nagayoshi, M. Ridder, J. Sadleir, K. Sakai, N. Wakeham, J. Low Temp. Phys. 193, 209 (2018)

    Article  ADS  Google Scholar 

  9. P. Khosropanah, E. Taralli, L. Gottardi, C.P. de Vries, K. Nagayoshi, M.L. Ridder, H. Akamatsu, M.P. Bruijn, J.-R. Gao, Proc. SPIE 106991M (2018). https://doi.org/10.1117/12.2313439

  10. D. Yan, R. Divan, L.M. Gades, P. Kenesei, T.J. Madden, A. Miceli, J.-S. Park, U.M. Patel, O. Quaranta, H. Sharma, D.A. Bennett, W.B. Doriese, J.W. Fowler, J.D. Gard, J.P. Hays-Wehle, K.M. Morgan, D.R. Schmidt, D.S. Swetz, Joel N. Ullom, Appl. Phys. Lett. 111, 192602 (2017). https://doi.org/10.1063/1.5001198

    Article  ADS  Google Scholar 

  11. K. Nagayoshi, M.L. Ridder, M.P. Bruijn, L. Gottardi, E. Taralli, P. Khosropanah, S. Visser, J.R. Gao, J. Low Temp. Phys. (This Special Issue) (2019)

  12. H. Akamatsu, L. Gottardi, J. van der Kuur, C.P. de Vries, K. Ravensberg, J.S. Adams, S.R. Bandler, M.P. Bruijn, J.A. Chervenak, C.A. Kilbourne, M. Kiviranta, A.J. van der Linden, B.D. Jackson, S.J. Smith, Proc. SPIE 99055S (2016). https://doi.org/10.1117/12.2232805

Download references

Acknowledgements

This work is partly funded by European Space Agency (ESA) and coordinated with other European efforts under ESA CTP contract ITT AO/1-7947/14/NL/BW. It has also received funding from the European Union’s Horizon 2020 Programme under the AHEAD (Activities for the High-Energy Astrophysics Domain) project with Grant Agreement Number 654215.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Taralli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taralli, E., Gottardi, L., Nagayoshi, K. et al. Characterization of High Aspect-Ratio TiAu TES X-ray Microcalorimeter Array Under AC Bias. J Low Temp Phys 199, 80–87 (2020). https://doi.org/10.1007/s10909-019-02254-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02254-y

Keywords

Navigation