Skip to main content
Log in

Patterned Supersolids in Dipolar Bose Systems

  • Rapid Communication
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We study by means of first-principle quantum Monte Carlo simulations the ground state phase diagram of a system of dipolar bosons with aligned dipole moments, and with the inclusion of a two-body repulsive potential of varying range. The system is shown to display a supersolid phase in a relatively broad region of the phase diagram, featuring different crystalline patterns depending on the density and on the range of the repulsive part of the interaction (scattering length). The supersolid phase is sandwiched between a classical crystal of parallel filaments and a homogeneous superfluid phase. We show that a “roton” minimum appears in the elementary excitation spectrum of the superfluid as the system approaches crystallization. The predictions of this study are in quantitative agreement with recent experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. See, e.g., [1] and references therein.

  2. In a typical experiment, the assembly of dipolar particles is spatially confined by means of a harmonic trap, which is generally non-spherical. Therefore, experimental observations will be to a degree affected by the specific confinement. However, the confining lengths in the three directions are generally large enough that one can reasonably argue that one is mostly investigating bulk properties.

  3. More precisely, Fig. 2a, like other similar images featured in this paper, shows the particle density map (integrated over the z direction) obtained from a statistically representative configuration (i.e., particle world lines). By statistically representative, we mean that every configuration generated in the simulation is physically equivalent to that shown in the figure, differing at the most by a rotation and/or a translation.

  4. The superfluid properties of a single filament are of interest in their own right, and they will be the subject of future work. A regime of independent (quasi)superfluid filaments in the thermodynamic limit seems possible.

  5. It is important to note that these objects appear spontaneously, i.e., they are not the result of a particular choice of starting configuration of the simulation; indeed, they form regardless of what such a starting point is.

  6. It is interesting to note that in the strictly two-dimensional limit no striped supersolid phase exists in this system. See [33].

  7. It need be noted that the dipolar length defined in Ref. [41] is equivalent to 1 / 3 of that defined here.

References

  1. T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, T. Pfau, Rep. Prog. Phys. 72, 126401 (2009)

    ADS  Google Scholar 

  2. A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, T. Pfau, Phys. Rev. Lett. 94, 160401 (2005)

    ADS  Google Scholar 

  3. M. Lu, N.Q. Burdick, S.H. Youn, B.L. Lev, Phys. Rev. Lett. 107, 190401 (2011)

    ADS  Google Scholar 

  4. K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm, F. Ferlaino, Phys. Rev. Lett. 108, 210401 (2012)

    ADS  Google Scholar 

  5. A. de Paz, A. Sharma, A. Chotia, E. Maréchal, J.H. Huckans, P. Pedri, L. Santos, O. Gorceix, L. Vernac, B. Laburthe-Tolra, Phys. Rev. Lett. 111, 185305 (2013)

    ADS  Google Scholar 

  6. K.-K. Ni, S. Ospelkaus, M.H.G. de Miranda, A. Peér, B. Neyenhuis, J.J. Zirbel, S. Kotochigova, P.S. Julienne, D.S. Jin, J. Ye, Science 322, 231 (2008)

    ADS  Google Scholar 

  7. B. Yan, S.A. Moses, B. Gadway, J.P. Covey, K.R.A. Hazzard, A.M. Rey, D.S. Jin, J. Ye, Nature (London) 501, 521 (2013)

    ADS  Google Scholar 

  8. T. Takekoshi, L. Reichsöllner, A. Schindewolf, J.M. Hutson, C.R. Le Sueur, O. Dulieu, F. Ferlaino, R. Grimm, H.-C. Nägerl, Phys. Rev. Lett. 113, 205301 (2014)

    ADS  Google Scholar 

  9. J.W. Park, S.A. Will, M.W. Zwierlein, Phys. Rev. Lett. 114, 205302 (2015)

    ADS  Google Scholar 

  10. J.B. Balewski, A.T. Krupp, A. Gaj, S. Hofferberth, R. Löw, T. Pfau, New J. Phys. 16, 063012 (2014)

    ADS  Google Scholar 

  11. M. Boninsegni, N.V. Prokof’ev, Rev. Mod. Phys. 84, 759 (2012)

    ADS  Google Scholar 

  12. M. Wenzel, F. Böttcher, T. Langen, I. Ferrier-Barbut, T. Pfau, Phys. Rev. A 96, 053630 (2017)

    ADS  Google Scholar 

  13. L. Chomaz, R.M.W. van Bijnen, D. Petter, G. Faraoni, S. Baier, J.H. Becher, M.J. Mark, F. Wächtler, L. Santos, F. Ferlaino, Nat. Phys. 14, 442 (2018)

    Google Scholar 

  14. F. Cinti, P. Jain, M. Boninsegni, A. Micheli, P. Zoller, G. Pupillo, Phys. Rev. Lett. 105, 135301 (2010)

    ADS  Google Scholar 

  15. M. Boninsegni, J. Low Temp. Phys. 168, 137 (2011)

    ADS  Google Scholar 

  16. F. Cinti, M. Boninsegni, Phys. Rev. A 96, 013627 (2017)

    ADS  Google Scholar 

  17. C.J. Pethick, H. Smith, Bose–Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  18. I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, T. Pfau, Phys. Rev. Lett. 116, 215301 (2016)

    ADS  Google Scholar 

  19. M. Schmitt, M. Wenzel, F. Böttcher, I. Ferrier-Barbut, T. Pfau, Nature (London) 539, 259 (2016). 27

    ADS  Google Scholar 

  20. L. Chomaz, S. Baier, D. Petter, M.J. Mark, F. Wächtler, L. Santos, F. Ferlaino, Phys. Rev. X 6, 041039 (2016)

    Google Scholar 

  21. A. Trautmann, P. Ilzhöfer, G. Durastante, C. Politi, M. Sohmen, M.J. Mark, F. Ferlaino, Phys. Rev. Lett. 121, 213601 (2018)

    ADS  Google Scholar 

  22. K.-O. Ng, D. Vanderbilt, Phys. Rev. B 52, 2177 (1995)

    ADS  Google Scholar 

  23. B. Spivak, S.A. Kivelson, Phys. Rev. B 70, 155114 (2004)

    ADS  Google Scholar 

  24. S. Flügge, Practical Quantum Mechanics (Springer, Berlin, 1971)

    MATH  Google Scholar 

  25. M. Boninsegni, N. Prokof’ev, B. Svistunov, Phys. Rev. Lett. 96, 070601 (2006)

    ADS  Google Scholar 

  26. M. Boninsegni, N.V. Prokof’ev, B.V. Svistunov, Phys. Rev. E 74, 036701 (2006)

    ADS  Google Scholar 

  27. F. Mezzacapo, M. Boninsegni, Phys. Rev. Lett. 97, 045301 (2006)

    ADS  Google Scholar 

  28. F. Mezzacapo, M. Boninsegni, Phys. Rev. A 75, 033201 (2007)

    ADS  Google Scholar 

  29. E.L. Pollock, D.M. Ceperley, Phys. Rev. B 36, 8343 (1987)

    ADS  Google Scholar 

  30. S. Saccani, S. Moroni, M. Boninsegni, Phys. Rev. B 83, 092506 (2011)

    ADS  Google Scholar 

  31. A.J. Leggett, Phys. Rev. Lett. 25, 1543 (1970)

    ADS  Google Scholar 

  32. S. Saccani, S. Moroni, M. Boninsegni, Phys. Rev. Lett. 108, 175301 (2012)

    ADS  Google Scholar 

  33. F. Cinti, M. Boninsegni, J. Low Temp. Phys. 196, 413 (2019)

    ADS  Google Scholar 

  34. M. Boninsegni, D.M. Ceperley, J. Low Temp. Phys. 104, 339 (1996)

    ADS  Google Scholar 

  35. Y. Kora, M. Boninsegni, Phys. Rev. B 98, 134509 (2018)

    ADS  Google Scholar 

  36. R.P. Feynman, Phys. Rev. 94, 262 (1954)

    ADS  Google Scholar 

  37. H.R. Glyde, Rep. Prog. Phys. 81, 014501 (2017)

    ADS  MathSciNet  Google Scholar 

  38. D. Petter, G. Natale, R.M.W. van Bijnen, A. Patscheider, M.J. Mark, L. Chomaz, F. Ferlaino, Phys. Rev. Lett. 122, 183401 (2019)

    ADS  Google Scholar 

  39. L. Tanzi, E. Lucioni, F. Famá, J. Catani, A. Fioretti, C. Gabbanini, R.N. Bisset, L. Santos, G. Modugno, Phys. Rev. Lett. 122, 130405 (2019)

    ADS  Google Scholar 

  40. F. Böttcher, J.-N. Schmidt, M. Wenzel, J. Hertkorn, M. Guo, T. Langen, T. Pfau, Phys. Rev. X 9, 011051 (2019)

    Google Scholar 

  41. L. Chomaz, D. Petter, P. Ilzhfer, G. Natale, A. Trautmann, C. Politi, G. Durastante, R.M.W. van Bijnen, A. Patscheider, M. Sohmen, M.J. Mark, F. Ferlaino, Phys. Rev. X 9, 021012 (2019)

    Google Scholar 

  42. S.M. Roccuzzo, F. Ancilotto, Phys. Rev. A 99, 041601(R) (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada, as well as ComputeCanada. Useful conversations with F. Cinti, S. Moroni and F. Ferlaino are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Boninsegni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kora, Y., Boninsegni, M. Patterned Supersolids in Dipolar Bose Systems. J Low Temp Phys 197, 337–347 (2019). https://doi.org/10.1007/s10909-019-02229-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02229-z

Keywords

Navigation