Skip to main content
Log in

Beyond the Horizon: Magneto-Optical Imaging Studies of the Kibble–Zurek Scenario in Superconductors

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The Kibble–Zurek (Kibble in J Phys A 9:1387–1398, 1976; Zurek in Nature 317:505–508, 1985) scenario predicts that the outcome of a second-order phase transition from a disordered system into an ordered one depends on the quench rate. The emerging order parameter in the ordered state is not spatially uniform, containing topological defects. The faster the transition, the larger the density of defects. In the case of a conductor–superconductor transition, these defects are flux quanta (vortices). To investigate this scenario, we developed a high-resolution magneto-optical imaging system capable of resolving single flux quanta. Using this system, we imaged arrays of spontaneously created vortices in a Nb film. These vortices were formed after the film was rapidly cooled into the superconducting state at rates around 109 K/s. The internal correlations within the vortex array are important in order to differentiate between competing models. In the Kibble–Zurek scenario, neighboring vortices should have a different polarity, while in Hindmarsh–Rajantie (Hindmarsh and Rajantie in Phys Rev Lett 85:4660–4663, 2000) model the polarity should be the same. Our results favor the Kibble–Zurek scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T.W.B. Kibble, J. Phys. A 9, 1387–1398 (1976)

    ADS  Google Scholar 

  2. W.H. Zurek, Nature 317, 505–508 (1985)

    Article  ADS  Google Scholar 

  3. M.B. Hindmarsh, A. Rajantie, Phys. Rev. Lett. 85, 4660–4663 (2000)

    Article  ADS  Google Scholar 

  4. A. Rajantie, Phys. Rev. D 79, 043515 (2009)

    Article  ADS  Google Scholar 

  5. C. Bauerle, Y.M. Bunkov, S.N. Fisher, H. Godfrin, G.R. Pickett, Nature 382, 332 (1996)

    Article  ADS  Google Scholar 

  6. V.H. Ruutu, V.B. Eltsov, A.J. Gill, T.W.B. Kibble, M. Krusius, YuG Marhlin, B. Placais, G. Voloviik, W. Xu, Nature 382, 334 (1996)

    Article  ADS  Google Scholar 

  7. R. Carmi, E. Polturak, G. Koren, Phys. Rev. Lett. 84, 4966 (2000)

    Article  ADS  Google Scholar 

  8. A. Maniv, E. Polturak, G. Koren, Phys. Rev. Lett. 90, 197001 (2003)

    Article  ADS  Google Scholar 

  9. J.R. Kirtley, C.C. Tsuei, F. Tafuri, Phys. Rev. Lett. 91, 257001 (2003)

    Article  ADS  Google Scholar 

  10. J.R. Monaco, J. Mygind, R.J. Rivers, V.P. Koshelets, Phys. Rev. B 80, 180501 (2009)

    Article  ADS  Google Scholar 

  11. R. Rajarshi, A.M. Srivastava, Phys. Rev. B 68, 174512 (2003)

    Article  Google Scholar 

  12. D. Rugar, H.J. Mamin, P. Guethner, S.E. Lambert, J.E. Stern, I. McFadyen, T. Yogi, J. Appl. Phys. 68, 1169 (1990)

    Article  ADS  Google Scholar 

  13. J.R. Kirtley, J. Wikswo, Ann. Rev. Mater. Sci. 29, 117 (1999)

    Article  ADS  Google Scholar 

  14. R.P. Hübener, Magnetic Flux Structures in Superconductors (Springer, Berlin, 2001)

    Book  Google Scholar 

  15. P.E. Goa, H. Hauglin, A.F. Olsen, M. Baziljevich, T.H. Johansen, Rev. Sci. Instrum. 74, 141 (2003)

    Article  ADS  Google Scholar 

  16. D. Golubchik, E. Polturak, G. Koren, S.G. Lipson, Opt. Express 17, 16160 (2009)

    Article  ADS  Google Scholar 

  17. U. Bolz, B. Biehler, D. Schmidt, B. Runge, P. Leiderer, Europhys. Lett. 64, 517 (2003)

    Article  ADS  Google Scholar 

  18. D. Golubchik, E. Polturak, G. Koren, Phys. Rev. Lett. 104, 247002 (2010)

    Article  ADS  Google Scholar 

  19. D. Golubchik, E. Polturak, G. Koren, Phys. Rev. B85, 060504 (2012). (Rapid Communications)

    Article  ADS  Google Scholar 

  20. F. Liu, G.F. Mazenko, Phys. Rev. B 46, 5963 (1992)

    Article  ADS  Google Scholar 

  21. D. Golubchik, E. Polturak, G. Koren, B.Y. Shapiro, I. Shapiro, J. Low Temp. Phys. 164, 74 (2011)

    Article  ADS  Google Scholar 

  22. A. Rajantie, Contemp. Phys. 44, 485 (2003)

    Article  ADS  Google Scholar 

  23. D. Golubchik, Ph.D. Thesis, Technion (2011)

Download references

Acknowledgements

I thank my former students Raz Carmi and Ariel Maniv, who initiated our work on this problem. I am grateful to Daniel Golubchik whose talent and hard work made the magneto-optical experiment possible. I thank P. Leiderer for suggesting to us the rapid heating–cooling method. I am indebted to Gad Koren and Steve Lipson for their important contribution to this research. I thank the Editors of JLTP for the opportunity to contribute to the special edition. This work was supported in part by the Israel Science Foundation.

Funding

Funding was provided by Israel Science Foundation (Grant No. 1089/13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil Polturak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polturak, E. Beyond the Horizon: Magneto-Optical Imaging Studies of the Kibble–Zurek Scenario in Superconductors. J Low Temp Phys 197, 310–320 (2019). https://doi.org/10.1007/s10909-019-02220-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02220-8

Keywords

Navigation