Skip to main content
Log in

Gray and Dark Soliton Behavior and Population Under a Symmetric and Asymmetric Potential Trap

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We numerically study the impact of Gaussian barrier height and width on gray solitons population in a symmetric and asymmetric potential trap. The gray solitons are created in a double-well potential by density engineering method. Two identical Bose–Einstein condensate fragments are confined and made to collide by switching off the Gaussian barrier in a double-well potential. We find that the gray solitons population can be manipulated by Gaussian barrier height and width. We also study the gray solitons population dependence on the coupling strength. Moreover, we also study the impact of an asymmetry present in the double-well potential. We observe that such an asymmetry always swings the point of collision of the gray solitons. Later, a stationary dark soliton is created by phase imprinting method, and we observe that the initial asymmetry in the double-well potential trap sets the dark soliton into oscillation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.S. Russell, in Report on Waves: Made to the Meetings of the British Association in 1842–43 (1845)

  2. R.I. Woodward, E.J.R. Kelleher, Phys. Rev. E 93, 032221 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  3. A. Chabchoub, O. Kimmoun, H. Branger, C. Kharif, N. Hoffmann, M. Onorato, N. Akhmediev, Phys. Rev. E 89, 011002 (2014)

    Article  ADS  Google Scholar 

  4. K.E. Strecker, G.B. Partridge, A.G. Truscott, R.G. Hulet, Nature (London) 417, 150 (2002)

    Article  ADS  Google Scholar 

  5. L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. Cubizolles, L.D. Carr, Y. Castin, C. Salomon, Science 296, 1290 (2002)

    Article  ADS  Google Scholar 

  6. S.L. Cornish, S.T. Thompson, C.E. Wieman, Phys. Rev. Lett. 96, 170401 (2006)

    Article  ADS  Google Scholar 

  7. S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G.V. Shlyapnikov, M. Lewenstein, Phys. Rev. Lett. 83, 5198 (1999)

    Article  ADS  Google Scholar 

  8. J. Denschlag, J.E. Simsarian, D.L. Feder, C.W. Clark, L.A. Collins, J. Cubizolles, L. Deng, E.W. Hagley, K. Helmerson, W.P. Reinhardt, S.L. Rolston, B.I. Schneider, W.D. Phillips, Science 287, 97 (2000)

    Article  ADS  Google Scholar 

  9. B.P. Anderson, P.C. Haljan, C.A. Regal, D.L. Feder, L.A. Collins, C.W. Clark, E.A. Cornell, Phys. Rev. Lett. 86, 2926 (2001)

    Article  ADS  Google Scholar 

  10. J. Akram, A. Pelster, Laser Phys. 26, 065501 (2016a)

    Article  ADS  Google Scholar 

  11. J. Akram, A. Pelster, Phys. Rev. A 93, 033610 (2016b)

    Article  ADS  Google Scholar 

  12. J. Akram, Laser Phys. Lett. 15, 025501 (2018)

    Article  ADS  Google Scholar 

  13. S. Yomosa, J. Phys. Soc. Jpn. 56, 506 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  14. A.H.D. Constantin, Z. fur Naturforschung A 64, 1 (2009)

    Google Scholar 

  15. W. Hereman, Shallow Water Waves and Solitary Waves, in Mathematics of Complexity and Dynamical Systems, ed. by R.A. Meyers (Springer, New York, 2011), pp. 1520–1532

    Google Scholar 

  16. O. Darrigol, Worlds of Flow: A History of Hydrodynamics from the Bernoullis to Prandtl (Oxford University Press, Oxford, 2005)

    MATH  Google Scholar 

  17. N.J. Zabusky, M.D. Kruskal, Phys. Rev. Lett. 15, 240 (1965)

    Article  ADS  Google Scholar 

  18. N.J. Zabusky, Phys. Rev. 168, 124 (1968)

    Article  ADS  Google Scholar 

  19. R.W. Clark, Einstein: The Life and Times, Discus Books (HarperCollins, 1984)

  20. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995)

    Article  ADS  Google Scholar 

  21. K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995)

    Article  ADS  Google Scholar 

  22. F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)

    Article  ADS  Google Scholar 

  23. D.J. Frantzeskakis, J. Phys. A Math. Theor. 43, 213001 (2010a)

    Article  ADS  Google Scholar 

  24. L. Khaykovich, Science 296, 1290 (2002)

    Article  ADS  Google Scholar 

  25. M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, M.K. Oberthaler, Phys. Rev. Lett. 95, 010402 (2005)

    Article  ADS  Google Scholar 

  26. D. Ananikian, T. Bergeman, Phys. Rev. A 73, 013604 (2006)

    Article  ADS  Google Scholar 

  27. R. Ichihara, I. Danshita, T. Nikuni, Phys. Rev. A 78, 063604 (2008)

    Article  ADS  Google Scholar 

  28. Ł. Dobrek, M. Gajda, M. Lewenstein, K. Sengstock, G. Birkl, W. Ertmer, Phys. Rev. A 60, R3381 (1999)

    Article  ADS  Google Scholar 

  29. E.P. Gross, J. Math. Phys. 4, 195 (1963)

    Article  ADS  Google Scholar 

  30. L.P. Pitaevsk, Sov. Phys. JETP-USSR 13, 7001053 (1961)

    Google Scholar 

  31. J. Akram, A. Pelster, Phys. Rev. A 93, 023606 (2016c)

    Article  ADS  Google Scholar 

  32. W. Bao, D. Jaksch, P.A. Markowich, J. Comput. Phys. 187, 318 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  33. D. Vudragović, I. Vidanović, A. Balaž, P. Muruganandam, S.K. Adhikari, Comput. Phys. Commun. 183, 2021 (2012)

    Article  ADS  Google Scholar 

  34. R .K. Kumar, L .E. Young-S, D. Vudragović, A. Balaž, P. Muruganandam, S. Adhikari, Comput. Phys. Commun. 195, 117 (2015)

    Article  ADS  Google Scholar 

  35. V. Lončar, A. Balaž, A. Bogojević, S. Škrbić, P. Muruganandam, S.K. Adhikari, Comput. Phys. Commun. 200, 406 (2016)

    Article  ADS  Google Scholar 

  36. B. Satarić, V. Slavnić, A. Belić, A. Balaž, P. Muruganandam, S.K. Adhikari, Comput. Phys. Commun. 200, 411 (2016)

    Article  ADS  Google Scholar 

  37. D.J. Frantzeskakis, J. Phys. A Math. Theor. 43, 213001 (2010b)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Jameel Hussain gratefully acknowledges support from the COMSATS University Islamabad for providing him a workspace.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javed Akram.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, J., Akram, J. & Saif, F. Gray and Dark Soliton Behavior and Population Under a Symmetric and Asymmetric Potential Trap. J Low Temp Phys 195, 429–436 (2019). https://doi.org/10.1007/s10909-019-02172-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02172-z

Keywords

Navigation