Skip to main content
Log in

Can Warmer than Room Temperature Electrons Levitate Above a Liquid Helium Surface?

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We address the problem of overheating of electrons trapped on the liquid helium surface by cyclotron resonance excitation. Previous experiments suggest that electrons can be heated to temperatures up to 1000 K, more than three orders of magnitude higher than the temperature of the helium bath in the sub-Kelvin range. In this work we attempt to discriminate between a redistribution of thermal origin and other out-of-equilibrium mechanisms that would not require so high temperatures like resonant photo-galvanic effects or negative mobilities. We argue that for a heating scenario the direction of the electron flow under cyclotron resonance can be controlled by the shape of the initial electron density profile, with a dependence that can be modeled accurately within the Poisson–Boltzmann theory framework. This provides an self-consistency check to probe whether the redistribution is indeed consistent with a thermal origin. We find that while our experimental results are consistent with the Poisson–Boltzmann theoretical dependence, some deviations suggest that other physical mechanisms can also provide a measurable contribution. Analyzing our results with the heating model we find that the electron temperatures increase with electron density under the same microwave irradiation conditions. This unexpected density dependence calls for a microscopic treatment of the energy relaxation of overheated electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y.P. Monarkha, K. Kono, Two-Dimensional Coulomb Liquids and Solids (Springer, Berlin, 2004)

    Book  Google Scholar 

  2. D. Konstantinov, K. Kono, Novel radiation-induced magnetoresistance oscillations in a nondegenerate two-dimensional electron system on liquid helium. Phys. Rev. Lett. 103, 266808 (2009)

    Article  ADS  Google Scholar 

  3. D. Konstantinov, K. Kono, Phys. Rev. Lett. 105, 226801 (2010)

    Article  ADS  Google Scholar 

  4. R. Yamashiro, L.V. Abdurakhimov, A.O. Badrutdinov, YuP Monarkha, D. Konstantinov, Photoconductivity response at cyclotron-resonance harmonics in a nondegenerate two-dimensional electron gas on liquid helium. Phys. Rev. Lett. 115, 256802 (2015)

    Article  ADS  Google Scholar 

  5. Denis Konstantinov, Alexei Chepelianskii, Kimitoshi Kono, Photoconductivity response at cyclotron-resonance harmonics in a nondegenerate two-dimensional electron gas on liquid helium. J. Phys. Soc. Jpn. 81, 093601 (2012)

    Article  ADS  Google Scholar 

  6. M.A. Zudov, R.R. Du, J.A. Simmons, J.L. Reno, Shubnikovde Haas-like oscillations in millimeterwave photoconductivity in a high-mobility two-dimensional electron gas. Phys. Rev. B 64, 201311(R) (2001)

    Article  ADS  Google Scholar 

  7. R.G. Mani et al., Zero-resistance states induced by electromagnetic-wave excitation in GaAs/AlGaAs heterostructures. Nature 420, 646–650 (2002)

    Article  ADS  Google Scholar 

  8. M.A. Zudov, R.R. Du, L.N. Pfeiffer, K.W. West, Evidence for a new dissipationless effect in 2D electronic transport. Phys. Rev. Lett. 90, 045807 (2003)

    Article  ADS  Google Scholar 

  9. A.A. Bykov, Microwave-induced magnetic field state with zero conductivity in GaAs/AlAs Corbino disks and hall bars. JETP Lett. 87, 551 (2008)

    Article  ADS  Google Scholar 

  10. M.A. Zudov, O.A. Mironov, Q.A. Ebner, P.D. Martin, Q. Shi, D.R. Leadley, Observation of microwave-induced resistance oscillations in a high-mobility two-dimensional hole gas in a strained Ge/SiGe quantum well. Phys. Rev. B 89, 125401 (2014)

    Article  ADS  Google Scholar 

  11. D.F. Krcher, A.V. Shchepetilnikov, Yu A. Nefyodov, J. Falson, I.A. Dmitriev, Y. Kozuka, D. Maryenko, A. Tsukazaki, S.I. Dorozhkin, I.V. Kukushkin, M. Kawasaki, J.H. Smet, Observation of microwave induced resistance and photovoltage oscillations in MgZnO/ZnO heterostructures. Phys. Rev. B 93, 041410(R) (2016)

    Article  ADS  Google Scholar 

  12. V.I. Ryzhii, Sov. Phys. Solid State 11, 2078 (1970)

    Google Scholar 

  13. A.C. Durst, S. Sachdev, N. Read, S.M. Girvin, Radiation-induced magnetoresistance oscillations in a 2D electron gas. Phys. Rev. Lett. 91, 086803 (2003)

    Article  ADS  Google Scholar 

  14. I.A. Dmitriev, A.D. Mirlin, D.G. Polyakov, Oscillatory ac conductivity and photoconductivity of a two-dimensional electron gas: quasiclassical transport beyond the Boltzmann equation. Phys. Rev. B 70, 165305 (2004)

    Article  ADS  Google Scholar 

  15. I.A. Dmitriev, M.G. Vavilov, I.L. Aleiner, A.D. Mirlin, D.G. Polyakov, Theory of microwave-induced oscillations in the magnetoconductivity of a two-dimensional electron gas. Phys. Rev. B 71, 115316 (2005)

    Article  ADS  Google Scholar 

  16. I.A. Dmitriev, A.D. Mirlin, D.G. Polyakov, Theory of fractional microwave-induced resistance oscillations. Phys. Rev. Lett. 99, 206805 (2007)

    Article  ADS  Google Scholar 

  17. A.D. Chepelianskii, J. Laidet, I. Farrer, H.E. Beere, D.A. Ritchie, H. Bouchiat, Enhancement of edge channel transport by a low-frequency irradiation. Phys. Rev. B 86, 205108 (2012)

    Article  ADS  Google Scholar 

  18. O.V. Zhirov, A.D. Chepelianksii, D.L. Shepelyansky, Towards a synchronization theory of microwave-induced zero-resistance states. Phys. Rev. B 88, 035410 (2013)

    Article  ADS  Google Scholar 

  19. Y.M. Beltukov, M.I. Dyakonov, Microwave-induced resistance oscillations as a classical memory effect. Phys. Rev. Lett. 116, 176801 (2016)

    Article  ADS  Google Scholar 

  20. I.A. Dmitriev, A.D. Mirlin, D.G. Polyakov, M.A. Zudov, Nonequilibrium phenomena in high Landau levels. Rev. Mod. Phys. 84, 1709–1763 (2012)

    Article  ADS  Google Scholar 

  21. A.A. Zadorozhko, YuA Monarkha, D. Konstantinov, Circular-polarizetion-dependent study of microwave-induced conductivity oscillations in a two-dimensional electron gas on liquid helium. Phys. Rev. Lett. 120, 046802 (2017)

    Article  ADS  Google Scholar 

  22. J.H. Smet et al., Circular-polarization-dependent study of the microwave photoconductivity in a two-dimensional electron system. Phys. Rev. Lett. 95, 116804 (2005)

    Article  ADS  Google Scholar 

  23. T. Herrmann et al., Analog of microwave-induced resistance oscillations induced in GaAs heterostructures by terahertz radiation. Phys. Rev. B 94, 081301(R) (2016)

    Article  ADS  Google Scholar 

  24. T. Herrmann et al., Magnetoresistance oscillations induced by high-intensity terahertz radiation. Phys. Rev. B 96, 115449 (2017)

    Article  ADS  Google Scholar 

  25. R.G. Mani, A.N. Ramanayak, W. Wegscheider, Observation of linear-polarization-sensitivity in the microwave-radiation-induced magnetoresistance oscillations. Phys. Rev. B 84, 085308 (2011)

    Article  ADS  Google Scholar 

  26. A.N. Ramanayaka, R.G. Mani, J. Inarrea, W. Wegscheider, Effect of rotation of the polarization of linearly polarized microwaves on the radiation-induced magnetoresistance oscillations. Phys. Rev. B 85, 205315 (2012)

    Article  ADS  Google Scholar 

  27. A.D. Chepelianskii, D.L. Shepelyansky, Microwave stabilization of edge transport and zero-resistance states. Phys. Rev. B 80, 241308(R) (2009)

    Article  ADS  Google Scholar 

  28. S.A. Mikhailov, Theory of microwave-induced zero-resistance states in two-dimensional electron systems. Phys. Rev. B 83, 155303 (2011)

    Article  ADS  Google Scholar 

  29. A.D. Chepelianskii, D.L. Shepelyansky, Microwave stabilization of edge transport and zero-resistance states. Phys. Rev. B 97, 125415 (2018)

    Article  ADS  Google Scholar 

  30. A.D. Chepelianskii, M. Watanabe, K. Nasyedkin, K. Kono, D. Konstantinov, An incompressible state of a photo-excited electron gas. Nat. Commun. 6, 7210 (2015)

    Article  ADS  Google Scholar 

  31. D. Konstantinov, M. Watanabe, K. Kono, Self-generated audio-frequency oscillations in 2D electrons with nonequilibrium carrier distribution on liquid helium. J. Phys. Soc. Jpn. 82, 075002 (2013)

    Article  ADS  Google Scholar 

  32. C.C. Grimes, T.R. Brown, M.L. Brown, C.L. Zipfel, Spectroscopy of electrons in image-potential-induced surface states outside liquid helium. Phys. Rev. B 13, 140 (1976)

    Article  ADS  Google Scholar 

  33. D.K. Lambert, P.L. Richards, Far-infrared and capacitance measurements of electrons on liquid helium. Phys. Rev. B 23, 3282 (1981)

    Article  ADS  Google Scholar 

  34. P.M. Platzman, M.I. Dykman, Quantum computing with electrons floating on liquid helium. Science 284, 1967 (1999)

    Article  Google Scholar 

  35. E. Collin, W. Bailey, P. Fozooni, P.G. Frayne, P. Glasson, K. Harrabi, M.J. Lea, G. Papageorgiou, Microwave saturation of the Rydberg states of electrons on helium. Phys. Rev. Lett. 89, 245301 (2002)

    Article  ADS  Google Scholar 

  36. Denis Konstantinov, Hanako Isshiki, Yuriy Monarkha, Hikota Akimoto, Keiya Shirahama, Kimitoshi Kono, Microwave-resonance-induced resistivity, evidence of ultrahot surface-state electrons on liquid. Phys. Rev. Lett. 98, 235302 (2007)

    Article  ADS  Google Scholar 

  37. Y. Monarkha, D. Konstantinov, K. Kono, Microwave absorption saturation and decay heating of surface electrons on liquid helium. Low Temp. Phys. 33, 718 (2007)

    Article  ADS  Google Scholar 

  38. Denis Konstantinov, M.I. Dykman, M.J. Lea, Yuriy Monarkha, Kimitoshi Kono, Resonant correlation-induced optical bistability in an electron system on liquid helium. Phys. Rev. Lett. 103, 096801 (2009)

    Article  ADS  Google Scholar 

  39. E. Collin, W. Bailey, P. Fozooni, P.G. Frayne, P. Glasson, K. Harrabi, M.J. Lea, Temperature-dependent energy levels of electrons on liquid helium. Phys. Rev. B 96, 235427 (2017)

    Article  ADS  Google Scholar 

  40. M.I. Dykman, K. Kono, D. Konstantinov, M.J. Lea, Ripplonic Lamb shift for electrons on liquid helium. Phys. Rev. Lett. 119, 256802 (2017)

    Article  ADS  Google Scholar 

  41. A.O. Badrutdinov, L.V. Abdurakhimov, D. Konstantinov, Cyclotron resonant photoresponse of a multisubband two-dimensional electron system on liquid helium. Phys. Rev. B 90, 075305 (2014)

    Article  ADS  Google Scholar 

  42. A.O. Badrutdinov, D. Konstantinov, M. Watanabe, K. Kono, Experimental study of energy relaxation of hot electrons on liquid helium-4. EPL 104, 47007 (2013)

    Article  ADS  Google Scholar 

  43. Y.P. Monarkha, Influence of shortwave surface excitations of liquid helium on damping effects in a two-dimensional electron gas Sov. J. Low Temp. Phys. 4, 515 (1978)

    Google Scholar 

  44. M.V. Entin, L.I. Magarill, Surface photocurrent in an electron gas over liquid He subjected to a quantizing magnetic field. JETP Lett. 98, 744 (2014)

    Article  Google Scholar 

  45. M.V. Entin, L.I. Magarill, Photogalvanic current in electron gas over a liquid helium surface. JETP Lett. 98, 816 (2014)

    Article  ADS  Google Scholar 

  46. Y.P. Monarkha, Cyclotron-resonance-induced negative dc conductivity in a two-dimensional electron system on liquid helium. Phys. Rev. B 91, 121402 (2015)

    Article  ADS  Google Scholar 

  47. Y.P. Monarkha, Density domains of a photo-excited electron gas on liquid helium. Low Temp. Phys. 42, 441 (2016)

    Article  ADS  Google Scholar 

  48. Fabien Closa, Elie Raphel, Alexei D. Chepelianskii, Transport properties of overheated electrons trapped on a helium surface. Eur. Phys. J. B 87, 190 (2014)

    Article  ADS  Google Scholar 

  49. A. Chepelianskii, F. Mohammad-Rafiee, E. Trizac, E. Raphal, On the effective charge of hydrophobic polyelectrolytes. J. Phys. Chem. B 113, 3743 (2009)

    Article  Google Scholar 

  50. A.D. Chepelianskii, F. Closa, E. Raphal, E. Trizac, Strong Screen. Plum Pudding Model 94, 68010 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Chepelianskii.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chepelianskii, A.D., Watanabe, M. & Kono, K. Can Warmer than Room Temperature Electrons Levitate Above a Liquid Helium Surface?. J Low Temp Phys 195, 307–318 (2019). https://doi.org/10.1007/s10909-019-02168-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02168-9

Keywords

Navigation