Skip to main content
Log in

Magnetic Field-Driven Spin-Flop Transition in Orthorhombic GdGa

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Structural and magnetic properties of GdGa are investigated using the combined results of X-ray diffraction and magnetization. DC magnetization measurements were carried out on as-cast and annealed specimens. Although, no considerable changes in the crystal parameters are observed by the effect of annealing, the change in the magnetic behavior is discernible. The low-temperature state is found to be simple antiferromagnetic with prevailing ferromagnetic exchange interactions in the paramagnetic state. The mismatch between the experimentally obtained effective magnetic moment of Gd in GdGa and the effective magnetic moment of \(\hbox {Gd}^{+3}\) is attributed to the presence of finite-sizable spin–orbit coupling. Moreover, the weakly correlated antiferromagnetic low-temperature ground state can be easily tuned to the ferromagnetic state through a spin-flop process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Pobell, Matter and Methods at Low Temperatures, 2nd edn. (Springer, Berlin, 1996)

    Book  Google Scholar 

  2. V.K. Pecharsky, K.A. G Jr., Phys. Rev. Lett. 78, 4494 (1997)

    Article  ADS  Google Scholar 

  3. M.H. Phan, S.C. Yu, J. Magn. Magn. Mater. 308, 325 (2007)

    Article  ADS  Google Scholar 

  4. G.V. Brown, J. Appl. Phys. 47, 3673 (1976)

    Article  ADS  Google Scholar 

  5. K.A. G Jr., V.K. Pecharsky, Annu. Rev. Mater. Sci. 30, 387 (2000)

    Article  ADS  Google Scholar 

  6. A.M. Tishin, K.H.J. Buschow, Handbook of Magnetic Materials, vol. 12 (Elsevier, The Netherlands, 1999)

    Google Scholar 

  7. C. Zimm, A. Jastrab, A. Sternberg, V. Pecharsky, K. G Jr., Adv. Cryog. Eng. 43, 1759 (1998)

    Article  Google Scholar 

  8. E. Brück, O. Tegus, D.T.C. Thanh, K.H.J. Buschow, J. Magn. Magn. Mater. 310, 2793 (2007)

    Article  ADS  Google Scholar 

  9. K.A. McEwen, Handbook on the Physics and Chemistry of Rare Earth, vol. 1 (North-Holland, Amsterdam, 1978)

    Google Scholar 

  10. S. Legvold, Ferromagnetic Materials, vol. 1 (North Holland, Amesterdam, 1980)

    Google Scholar 

  11. W.J. Ren, D. Li, W. Liu, J. Li, Z.D. Zhang, J. Appl. Phys. 103, 07B323 (2008)

    Article  Google Scholar 

  12. A.E. Dwight, J.W. Downey, R.A. C Jr., Acta Crystallogr. 23, 860 (1967)

    Article  Google Scholar 

  13. J.W. Cable, W.C. Koehler, E.O. Wollen, Phys. Rev. 136, A240 (1964)

    Article  ADS  Google Scholar 

  14. J. Zhang, J. Luo, J.B. Li, J.K. Liang, Y.C. Wang, L.N. Ji, Y.H. Liu, G.H. Rao, J. Alloys Compd. 469, 15 (2009)

    Article  Google Scholar 

  15. N.N. Delyagin, V.I. Krylov, I.N. Rozantsev, J. Magn. Magn. Mater. 308, 74 (2007)

    Article  ADS  Google Scholar 

  16. K.H.J. Buschow, W.W. v d Hoogenhof, J. Less Common Met. 45, 309 (1976)

    Article  Google Scholar 

  17. N. Shohata, J. Phys. Soc. Jpn. 42, 1873 (1977)

    Article  ADS  Google Scholar 

  18. R.A. Susilo, J.M. Cadogan, D.H. Ryan, N.R. Lee-Hone, R. Cobas, S.M. noz Párez, Hyper Fine Interact 226, 257 (2014)

    Article  ADS  Google Scholar 

  19. S. Ohara, I. Sakamoto, Y. Aoki, H. Sato, I. Oguro, T. Sasaki, G. Kido, S. Maruno, Phys. B Condens. Matter. 223, 379 (1996)

    Article  ADS  Google Scholar 

  20. T. Hamasaki, T. Yokoo, M. Arai, S. Ohara, I. Sakamoto, J. Magn. Magn. Mater. 272, e465 (2004)

    Article  ADS  Google Scholar 

  21. J. Rodrguez-Carvajal, Phys. B Condens. Matter 192, 55 (1993)

    Article  ADS  Google Scholar 

  22. C. Kittel, Introduction to Solid State Physics (Wiley, New Delhi, 2009)

    MATH  Google Scholar 

  23. N.W. Aschcroft, N.D. Mermin, Solid State Physics (Eastern Press Pvt. Ltd., Bangalore, 2006)

    Google Scholar 

  24. A.M. Strydom, Eur. Phys. J. B 74, 9 (2010)

    Article  ADS  Google Scholar 

  25. S.S. Samatham, S. Barua, K.G. Suresh, J. Magn. Magn. Mater. 444, 439 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors, SP acknowledges K. G. Suresh, IIT Bombay for his permission to use the arc-melting facility and Akhilesh Kumar Patel for his help in sample preparation. P. D. Babu, UGC-DAE CSR-Mumbai is thanked for providing magnetization data and S. S. Samatham, MVGRCE for the fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. Naga Raju.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinninti, S., Raju, G.J.N. Magnetic Field-Driven Spin-Flop Transition in Orthorhombic GdGa. J Low Temp Phys 195, 252–261 (2019). https://doi.org/10.1007/s10909-019-02159-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02159-w

Keywords

Navigation