Skip to main content
Log in

Comparison of NIST SA13a and SA4b SQUID Array Amplifiers

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

A Correction to this article was published on 27 October 2018

This article has been updated

Abstract

Several current and proposed cosmic microwave background experiments use transition edge sensor bolometer focal planes coupled to the digital frequency-domain multiplexing (DfMux) electronics. This readout architecture sums bolometer signals in a SQUID array amplifier (SAA). In this study, we investigate the properties of two SAA designs, the SA4b, which is currently used in the DfMux system, and the SA13a. The SA13a design is gradiometric, making it less sensitive to stray magnetic field pickup. It has lower input inductance and is laid out on the chip as a re-configurable array with 6 banks of 64 series SQUIDs that can be arranged in any series and parallel configurations to optimize array noise, peak-to-peak modulation depth, and dynamic output resistance. The SA13a design reported on here is configured with 3 banks in series \(\times \) 2 banks in parallel. The SA4b is a series array of 100 SQUIDs in series, each with an 8-turn input coil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 27 October 2018

    The original version of this article unfortunately contained a mistake in the authors’ affiliation. The affiliations of coauthors were not submitted and published.

  • 27 October 2018

    The original version of this article unfortunately contained a mistake in the authors��� affiliation. The affiliations of coauthors were not submitted and published.

Notes

  1. The SQUID Handbook [9] defines linear range in terms of a Taylor expansion of the \(V{-}\varPhi \) curve—we do not derive our linear range from \(V{-}\varPhi \) curves, but our measurement is a way of probing the relative contributions of higher-order terms in this expansion.

References

  1. M. Dobbs, N. Halverson, P. Ade, K. Basu, A. Beelen, F. Bertoldi, C. Cohalan, H. Cho, R. Güsten, W. Holzapfel, Z. Kermish, R. Kneissl, A. Kovács, E. Kreysa, T. Lanting, A. Lee, M. Lueker, J. Mehl, K. Menten, D. Muders, M. Nord, T. Plagge, P. Richards, P. Schilke, D. Schwan, H. Spieler, A. Weiss, M. White, Apex-sz first light and instrument status. New Astron. Rev. 50(11), 960–968 (2006)

    Article  ADS  Google Scholar 

  2. R.P. Welty, J.M. Martinis, Two-stage integrated squid amplifier with series array output. IEEE Trans. Appl. Supercond. 3, 2605–2608 (1993)

    Article  ADS  Google Scholar 

  3. J. Hubmayr, F. Aubin, E. Bissonnette, M. Dobbs, S. Hanany, A.T. Lee, K. MacDermid, X. Meng, I. Sagiv, G. Smecher, Design and characterization of tes bolometers and squid readout electronics for a balloon-borne application. Proc. SPIE 7020, 7020–7020-8 (2008)

    ADS  Google Scholar 

  4. B.A. Benson, P.A.R. Ade, Z. Ahmed, S.W. Allen, K. Arnold, J.E. Austermann, A.N. Bender, L.E. Bleem, J.E. Carlstrom, C.L. Chang, H.M. Cho, J.F. Cliche, T.M. Crawford, A. Cukierman, T. de Haan, M.A. Dobbs, D. Dutcher, W. Everett, A. Gilbert, N.W. Halverson, D. Hanson, N.L. Harrington, K. Hattori, J.W. Henning, G.C. Hilton, G.P. Holder, W.L. Holzapfel, K.D. Irwin, R. Keisler, L. Knox, D. Kubik, C.L. Kuo, A.T. Lee, E.M. Leitch, D. Li, M. McDonald, S.S. Meyer, J. Montgomery, M. Myers, T. Natoli, H. Nguyen, V. Novosad, S. Padin, Z. Pan, J. Pearson, C. Reichardt, J.E. Ruhl, B.R. Saliwanchik, G. Simard, G. Smecher, J.T. Sayre, E. Shirokoff, A.A. Stark, K. Story, A. Suzuki, K.L. Thompson, C. Tucker, K. Vanderlinde, J.D. Vieira, A. Vikhlinin, G. Wang, V. Yefremenko, K.W. Yoon, Spt-3g: a next-generation cosmic microwave background polarization experiment on the south pole telescope. Proc. SPIE 9153, 9153–9153-21 (2014)

    Google Scholar 

  5. J.E. Austermann, K.A. Aird, J.A. Beall, D. Becker, A. Bender, B.A. Benson, L.E. Bleem, J. Britton, J.E. Carlstrom, C.L. Chang, H.C. Chiang, H.-M. Cho, T.M. Crawford, A.T. Crites, A. Datesman, T. de Haan, M.A. Dobbs, E.M. George, N.W. Halverson, N. Harrington, J.W. Henning, G.C. Hilton, G.P. Holder, W.L. Holzapfel, S. Hoover, N. Huang, J. Hubmayr, K.D. Irwin, R. Keisler, J. Kennedy, L. Knox, A.T. Lee, E. Leitch, D. Li, M. Lueker, D.P. Marrone, J.J. McMahon, J. Mehl, S.S. Meyer, T.E. Montroy, T. Natoli, J.P. Nibarger, M.D. Niemack, V. Novosad, S. Padin, C. Pryke, C.L. Reichardt, J.E. Ruhl, B.R. Saliwanchik, J.T. Sayre, K.K. Schaffer, E. Shirokoff, A.A. Stark, K. Story, K. Vanderlinde, J.D. Vieira, G. Wang, R. Williamson, V. Yefremenko, K.W. Yoon, O. Zahn, Sptpol: an instrument for cmb polarization measurements with the south pole telescope. Proc. SPIE 8452, 8452–8452-18 (2012)

    Google Scholar 

  6. Z.D. Kermish, P. Ade, A. Anthony, K. Arnold, D. Barron, D. Boettger, J. Borrill, S. Chapman, Y. Chinone, M.A. Dobbs, J. Errard, G. Fabbian, D. Flanigan, G. Fuller, A. Ghribi, W. Grainger, N. Halverson, M. Hasegawa, K. Hattori, M. Hazumi, W.L. Holzapfel, J. Howard, P. Hyland, A. Jaffe, B. Keating, T. Kisner, A.T. Lee, M.L. Jeune, E. Linder, M. Lungu, F. Matsuda, T. Matsumura, X. Meng, N.J. Miller, H. Morii, S. Moyerman, M.J. Myers, H. Nishino, H. Paar, E. Quealy, C.L. Reichardt, P.L. Richards, C. Ross, A. Shimizu, M. Shimon, C. Shimmin, M. Sholl, P. Siritanasak, H. Spieler, N. Stebor, B. Steinbach, R. Stompor, A. Suzuki, T. Tomaru, C. Tucker, O. Zahn, The polarbear experiment. Proc. SPIE 8452, 8452–8452-15 (2012)

    ADS  Google Scholar 

  7. A. Suzuki, P. Ade, Y. Akiba, C. Aleman, K. Arnold, C. Baccigalupi, B. Barch, D. Barron, A. Bender, D. Boettger, J. Borrill, S. Chapman, Y. Chinone, A. Cukierman, M. Dobbs, A. Ducout, R. Dunner, T. Elleflot, J. Errard, G. Fabbian, S. Feeney, C. Feng, T. Fujino, G. Fuller, A. Gilbert, N. Goeckner-Wald, J. Groh, T.D. Haan, G. Hall, N. Halverson, T. Hamada, M. Hasegawa, K. Hattori, M. Hazumi, C. Hill, W. Holzapfel, Y. Hori, L. Howe, Y. Inoue, F. Irie, G. Jaehnig, A. Jaffe, O. Jeong, N. Katayama, J. Kaufman, K. Kazemzadeh, B. Keating, Z. Kermish, R. Keskitalo, T. Kisner, A. Kusaka, M.L. Jeune, A. Lee, D. Leon, E. Linder, L. Lowry, F. Matsuda, T. Matsumura, N. Miller, K. Mizukami, J. Montgomery, M. Navaroli, H. Nishino, J. Peloton, D. Poletti, G. Puglisi, G. Rebeiz, C. Raum, C. Reichardt, P. Richards, C. Ross, K. Rotermund, Y. Segawa, B. Sherwin, I. Shirley, P. Siritanasak, N. Stebor, R. Stompor, J. Suzuki, O. Tajima, S. Takada, S. Takakura, S. Takatori, A. Tikhomirov, T. Tomaru, B. Westbrook, N. Whitehorn, T. Yamashita, A. Zahn, O. Zahn, The polarbear-2 and the simons array experiments. J. Low Temp. Phys. 184, 805–810 (2016)

    Article  ADS  Google Scholar 

  8. M.A. Dobbs, M. Lueker, K.A. Aird, A.N. Bender, B.A. Benson, L.E. Bleem, J.E. Carlstrom, C.L. Chang, H.-M. Cho, J. Clarke, T.M. Crawford, A.T. Crites, D.I. Flanigan, T. de Haan, E.M. George, N.W. Halverson, W.L. Holzapfel, J.D. Hrubes, B.R. Johnson, J. Joseph, R. Keisler, J. Kennedy, Z. Kermish, T.M. Lanting, A.T. Lee, E.M. Leitch, D. Luong-Van, J.J. McMahon, J. Mehl, S.S. Meyer, T.E. Montroy, S. Padin, T. Plagge, C. Pryke, P.L. Richards, J.E. Ruhl, K.K. Schaffer, D. Schwan, E. Shirokoff, H.G. Spieler, Z. Staniszewski, A.A. Stark, K. Vanderlinde, J.D. Vieira, C. Vu, B. Westbrook, R. Williamson, Frequency multiplexed superconducting quantum interference device readout of large bolometer arrays for cosmic microwave background measurements. Rev. Sci. Instrum. 83(7), 073113 (2012)

    Article  ADS  Google Scholar 

  9. J. Clarke, A.I. Braginski, The SQUID Handbook Fundamentals and Technology of SQUIDs and SQUID Systems (Wiley, Weinheim, 2006)

    Google Scholar 

  10. J.S. Avva, P.A.R. Ade, Z. Ahmed, A.J. Anderson, J.E. Austermann, R.B. Thakur, D. Barron, A.N. Bender, B.A. Benson, J.E. Carlstrom, F.W. Carter, T. Cecil, C.L. Chang, J.F. Cliche, A. Cukierman, E.V. Denison, T. de Haan, J. Ding, M.A. Dobbs, D. Dutcher, T. Elleflot, W. Everett, A. Foster, R.N. Gannon, A. Gilbert, J.C. Groh, N.W. Halverson, A.H. Harke-Hosemann, N.L. Harrington, M. Hasegawa, K. Hattori, J.W. Henning, G.C. Hilton, W.L. Holzapfel, Y. Hori, N. Huang, K.D. Irwin, O.B. Jeong, M. Jonas, T. Khaire, A.M. Kofman, M. Korman, D. Kubik, S. Kuhlmann, C.L. Kuo, A.T. Lee, A.E. Lowitz, S.S. Meyer, J. Montgomery, A. Nadolski, T. Natoli, H. Nguyen, H. Nishino, G.I. Noble, V. Novosad, S. Padin, Z. Pan, J. Pearson, C.M. Posada, A. Rahlin, K. Rotermund, J.E. Ruhl, L.J. Saunders, J.T. Sayre, I. Shirley, E. Shirokoff, G. Smecher, J.A. Sobrin, A.A. Stark, K.T. Story, A. Suzuki, Q.Y. Tang, K.L. Thompson, C. Tucker, L.R. Vale, K. Vanderlinde, J.D. Vieira, G. Wang, N. Whitehorn, V. Yefremenko, K.W. Yoon, M.R. Young, Design and assembly of SPT-3G cold readout hardware. J. Low Temp. Phys. (2018). https://doi.org/10.1007/s10909-018-1965-5

    Article  Google Scholar 

  11. W.B. Doriese, K.M. Morgan, D.A. Bennett, E.V. Denison, C.P. Fitzgerald, J.W. Fowler, J.D. Gard, J.P. Hays-Wehle, G.C. Hilton, K.D. Irwin, Y.I. Joe, J.A.B. Mates, G.C. O’Neil, C.D. Reintsema, N.O. Robbins, D.R. Schmidt, D.S. Swetz, H. Tatsuno, L.R. Vale, J.N. Ullom, Developments in time-division multiplexing of X-ray transition-edge sensors. J. Low Temp. Phys. 184, 389–395 (2016)

    Article  ADS  Google Scholar 

  12. L. Gottardi, M. Kiviranta, J. van der Kuur, H. Akamatsu, M.P. Bruijn, R. den Hartog, Nearly quantum limited two-stage squid amplifiers for the frequency domain multiplexing of tes based X-ray and infrared detectors. IEEE Trans. Appl. Supercond. 25, 1–4 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

SQUID arrays used in this work were fabricated in the NIST-Boulder microfabrication facility. DfMux room-temperature digital electronics used for these measurements were built by the McGill Cosmology Group. DB is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under Award AST-1501422.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximiliano Silva-Feaver.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva-Feaver, M., Arnold, K., Barron, D. et al. Comparison of NIST SA13a and SA4b SQUID Array Amplifiers. J Low Temp Phys 193, 600–610 (2018). https://doi.org/10.1007/s10909-018-2052-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-2052-7

Keywords

Navigation