The LiteBIRD Satellite Mission: Sub-Kelvin Instrument


Inflation is the leading theory of the first instant of the universe. Inflation, which postulates that the universe underwent a period of rapid expansion an instant after its birth, provides convincing explanation for cosmological observations. Recent advancements in detector technology have opened opportunities to explore primordial gravitational waves generated by the inflation through “B-mode” (divergent-free) polarization pattern embedded in the cosmic microwave background anisotropies. If detected, these signals would provide strong evidence for inflation, point to the correct model for inflation, and open a window to physics at ultra-high energies. LiteBIRD is a satellite mission with a goal of detecting degree-and-larger-angular-scale B-mode polarization. LiteBIRD will observe at the second Lagrange point with a 400 mm diameter telescope and 2622 detectors. It will survey the entire sky with 15 frequency bands from 40 to 400 GHz to measure and subtract foregrounds. The US LiteBIRD team is proposing to deliver sub-Kelvin instruments that include detectors and readout electronics. A lenslet-coupled sinuous antenna array will cover low-frequency bands (40–235 GHz) with four frequency arrangements of trichroic pixels. An orthomode-transducer-coupled corrugated horn array will cover high-frequency bands (280–402 GHz) with three types of single frequency detectors. The detectors will be made with transition edge sensor (TES) bolometers cooled to a 100 milli-Kelvin base temperature by an adiabatic demagnetization refrigerator. The TES bolometers will be read out using digital frequency multiplexing with Superconducting QUantum Interference Device (SQUID) amplifiers. Up to 78 bolometers will be multiplexed with a single SQUID amplifier. We report on the sub-Kelvin instrument design and ongoing developments for the LiteBIRD mission.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. 1.

    T. Matsumura et al., Development of a half-wave plate based polarization modulator unit for litebird. Physics, this Special Issue LTD17 (2018)

  2. 2.

    A. Kusaka, T. Essinger-Hileman, J.W. Appel, P. Gallardo, K.D. Irwin, N. Jarosik, M.R. Nolta, L.A. Page, L.P. Parker, S. Raghunathan, J.L. Sievers, S.M. Simon, S.T. Staggs, K. Visnjic, Modulation of cosmic microwave background polarization with a warm rapidly rotating half-wave plate on the atacama b-mode search instrument. Rev. Sci. Instrum. 85(2), 024501 (2014)

    ADS  Article  Google Scholar 

  3. 3.

    A. Suzuki, K. Arnold, J. Edwards, G. Engargiola, W. Holzapfel, B. Keating, A.T. Lee, X.F. Meng, M.J. Myers, R. OBrient, E. Quealy, G. Rebeiz, P.L. Richards, D. Rosen, P. Siritanasak, Multi-chroic dual-polarization bolometric detectors for studies of the cosmic microwave background. J. Low Temp. Phys. 176(5–6), 650–656 (2014)

    ADS  Article  Google Scholar 

  4. 4.

    B. Westbrook et al., The polarbear-2 and simons array focal plane fabrication status. Physics, this Special Issue LTD17 (2018)

  5. 5.

    A. Anderson et al., Spt-3g: A multichroic receiver for the south pole telescope. Physics, this Special Issue LTD17 (2018)

  6. 6.

    K.W. Yoon, J.W. Appel, J.E. Austermann, J.A. Beall, D. Becker, B.A. Benson, L.E. Bleem, J. Britton, C.L. Chang, J.E. Carlstrom, H.-M. Cho, A.T. Crites, T. Essinger-Hileman, W. Everett, N.W. Halverson, J.W. Henning, G.C. Hilton, K.D. Irwin, J. McMahon, J. Mehl, S.S. Meyer, S. Moseley, M.D. Niemack, L.P. Parker, S.M. Simon, S.T. Staggs, K.U-Yen, C. Visnjic, E. Wollack, Y. Zhao, Feedhorn-Coupled TES Polarimeters for Next-Generation CMB Instruments. 1185, 515–518 (2009)

  7. 7.

    J.E. Austermann, K.A. Aird, J.A. Beall, D. Becker, A. Bender, B.B.A. Benson, L.E. Bleem, J. Britton, J.E. Carlstrom, C.L. Chang, H.C. Chiang, H.-M. Cho, T.M. Crawford, A.T. Crites, A. Datesman, T. de Haan, M.A. Dobbs, E.M. George, N.W. Halverson, J.W. Henning, G.C. Hilton, G.P. Holder, W.L. Holzapfel, S. Hoover, N. Huang, J. Hubmayr, K.D. Irwin, R. Keisler, L. Knox, A.T. Lee, E. Leitch, D. Li, M. Lueker, D.P. Marrone, J.J. McMahon, J. Mehl, S.S. Meyer, T.E. Montroy, T. Natoli, J.P. Nibarger, M.D. Niemack, V. Novosad, S. Padin, C. Pryke, C.L. Reichardt, J.E. Ruhl, B.R. Saliwanchik, J.T. Sayre, K.K. Schaffer, E. Shirokoff, A.A. Stark, K. Story, K. Vanderlinde, J.D. Vieira, G. Wang, R. Williamson, V. Yefremenko, K.W. Yoon, O. Zahn, Sptpol: an instrument for cmb polarization measurements with the south pole telescope, in Proceedings of SPIE, vol 8452-18 (2012)

  8. 8.

    J. Hubmayr, J.E. Austermann, J.A. Beall, D.T. Becker, S.J. Benton, A. S. Bergman, J.R. Bond, S. Bryan, S.M. Duff, A.J. Duivenvoorden, H.K. Eriksen, J.P. Filippini, A. Fraisse, M. Galloway, A.E. Gambrel, K. Ganga, A. L. Grigorian, R. Gualtieri, J.E. Gudmundsson, J.W. Hartley, M. Halpern, G.C. Hilton, W.C. Jones, J.J. McMahon, L. Moncelsi, J.M. Nagy, C.B. Netterfield, B. Osherson, I. Padilla, A.S. Rahlin, B. Racine, J. Ruhl, T.M. Rudd, J.A. Shariff, J.D. Soler, X. Song, J.N. Ullom, J. Van Lanen, M.R. Vissers, I.K. Wehus, S. Wen, D.V. Wiebe, E. Young, Design of 280 ghz feedhorn-coupled tes arrays for the balloon-borne polarimeter spider, in Proceedings of SPIE, vol 9914-14 (2016)

  9. 9.

    D. Li, J.E. Austermann, J.A. Beall, D.T. Becker, S.M. Duff, P.A. Gallardo, S.W. Henderson, G.C. Hilton, S.-P. Ho, J. Hubmayr, B.J. Koopman, J.J. McMahon, F. Nati, M.D. Niemack, C.G. Pappas, M. Salatino, B.L. Schmitt, S.M. Simon, S.T. Staggs, J. Van Lanen, J.T. Ward, E.J. Wollack, Almn transition edge sensors for advanced actpol. J. Low Temp. Phys. 184(1), 66–73 (2016)

    ADS  Article  Google Scholar 

  10. 10.

    T. de Haan, G. Smecher, M. Dobbs, Improved performance of tes bolometers using digital feedback, in Proceedings of SPIE, vol 8452-10 (2012)

  11. 11.

    A. Catalano, P. Ade, Y. Atik, A. Benoit, E. Bréele, J.J. Bock, P. Camus, M. Chabot, M. Charra, B.P. Crill, N. Coron, A. Coulais, F.-X. Désert, L. Fauvet, Y. Giraud-Héraud, O. Guillaudin, W. Holmes, W.C. Jones, J.-M. Lamarre, J. Macías-Pérez, M. Martinez, A. Miniussi, A. Monfardini, F. Pajot, G. Patanchon, A. Pelissier, M. Piat, J.-L. Puget, C. Renault, C. Rosset, D. Santos, A. Sauvé, L.D. Spencer, R. Sudiwala, Impact of particles on the Planck HFI detectors: Ground-based measurements and physical interpretation. AAP 569, A88 (2014)

    Article  Google Scholar 

  12. 12.

    J.-M. Duval, L. Duband, A. Attard, Qualification campaign of the 50 mk hybrid sorption-adr cooler for spica/safari. IOP Conf. Ser. Mater. Sci. Eng. 101(1), 012010 (2015)

    Article  Google Scholar 

Download references


Development for the sub-Kelvin instrument was supported by the NASA Mission of Opportunity Phase A effort.

Author information



Corresponding author

Correspondence to A. Suzuki.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suzuki, A., Ade, P.A.R., Akiba, Y. et al. The LiteBIRD Satellite Mission: Sub-Kelvin Instrument. J Low Temp Phys 193, 1048–1056 (2018).

Download citation


  • Cosmic microwave background
  • Satellite
  • Inflation
  • Polarization
  • B-mode