Skip to main content
Log in

Multilevel Effects in a Driven Generalized Rabi Model

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We study numerically the onset of higher-level excitations and resonance frequency shifts in the generalized multilevel Rabi model with dispersive coupling under strong driving. The response to a weak probe is calculated using the Floquet method, which allows us to calculate the probe spectrum and extract the resonance frequency. We test our predictions using a superconducting circuit consisting of a transmon coupled capacitively to a coplanar waveguide resonator. This system is monitored by a weak probe field and at the same time driven at various powers by a stronger microwave tone. We show that the transition from the quantum to the classical regime is accompanied by a rapid increase of the transmon occupation and consequently that the qubit approximation is valid only in the extreme quantum limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. E.T. Jaynes, F.W. Cummings, Proc. IEEE 51(1), 89 (1963). https://doi.org/10.1109/PROC.1963.1664

    Article  Google Scholar 

  2. M. Devoret, S. Girvin, R. Schoelkopf, Annalen der Physik 16(10–11), 767 (2007). https://doi.org/10.1002/andp.200710261

    Article  ADS  Google Scholar 

  3. Y. Zhu, D.J. Gauthier, S.E. Morin, Q. Wu, H.J. Carmichael, T.W. Mossberg, Phys. Rev. Lett. 64(21), 2499 (1990). https://doi.org/10.1103/PhysRevLett.64.2499

    Article  ADS  Google Scholar 

  4. H.J. Carmichael, P. Kochan, B.C. Sanders, Phys. Rev. Lett. 77(4), 631 (1996). https://doi.org/10.1103/PhysRevLett.77.631

    Article  ADS  Google Scholar 

  5. J.M. Fink, M. Göppl, M. Baur, R. Bianchetti, P.J. Leek, A. Blais, A. Wallraff, Nature 454(7202), 315 (2008). https://doi.org/10.1038/nature07112

    Article  ADS  Google Scholar 

  6. A. Blais, R.S. Huang, A. Wallraff, S.M. Girvin, R.J. Schoelkopf, Phys. Rev. A 69(6), 062320 (2004). https://doi.org/10.1103/PhysRevA.69.062320

    Article  ADS  Google Scholar 

  7. A. Wallraff, D.I. Schuster, A. Blais, L. Frunzio, R.S. Huang, J. Majer, S. Kumar, S.M. Girvin, R.J. Schoelkopf, Nature 431(7005), 162 (2004). https://doi.org/10.1038/nature02851

    Article  ADS  Google Scholar 

  8. A. Fragner, M. Göppl, J.M. Fink, M. Baur, R. Bianchetti, P.J. Leek, A. Blais, A. Wallraff, Science 322(5906), 1357 (2008). https://doi.org/10.1126/science.1164482

    Article  ADS  Google Scholar 

  9. M.P. Silveri, K.S. Kumar, J. Tuorila, J. Li, A. Vepsäläinen, E.V. Thuneberg, G.S. Paraoanu, N. J. Phys. 17(4), 043058 (2015). https://doi.org/10.1088/1367-2630/17/4/043058

    Article  Google Scholar 

  10. J. Li, M.P. Silveri, K.S. Kumar, J.M. Pirkkalainen, A. Vepsäläinen, W.C. Chien, J. Tuorila, M.A. Sillanpää, P.J. Hakonen, E.V. Thuneberg, G.S. Paraoanu, Nat. Commun. 4, 1420 (2013). https://doi.org/10.1038/ncomms2383

    Article  ADS  Google Scholar 

  11. A. Mezzacapo, U. Las Heras, J.S. Pedernales, L. DiCarlo, E. Solano, L. Lamata, Sci. Rep. 4, 7482 (2014). https://doi.org/10.1038/srep07482

    Article  ADS  Google Scholar 

  12. L. Lamata, Sci. Rep. 7, 43768 (2017). https://doi.org/10.1038/srep43768

    Article  ADS  Google Scholar 

  13. N.K. Langford, R. Sagastizabal, M. Kounalakis, C. Dickel, A. Bruno, F. Luthi, D.J Theon, A. Endo, L. DiCarlo, Nat. Commun. 8, 1715 (2017). https://doi.org/10.1038/s41467-017-01061-x

  14. R.J. Schoelkopf, S.M. Girvin, Nature 451(7179), 664 (2008). https://doi.org/10.1038/451664a

    Article  ADS  Google Scholar 

  15. G.S. Paraoanu, J. Low Temp. Phys. 175(5), 633 (2014). https://doi.org/10.1007/s10909-014-1175-8

    Article  ADS  Google Scholar 

  16. J. Koch, T.M. Yu, J. Gambetta, A.A. Houck, D.I. Schuster, J. Majer, A. Blais, M.H. Devoret, S.M. Girvin, R.J. Schoelkopf, Phys. Rev. A 76(4), 042319 (2007). https://doi.org/10.1103/PhysRevA.76.042319

    Article  ADS  Google Scholar 

  17. D.I. Schuster, A.A. Houck, J.A. Schreier, A. Wallraff, J.M. Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M.H. Devoret, S.M. Girvin, R.J. Schoelkopf, Nature 445(7127), 515 (2007). https://doi.org/10.1038/nature05461

    Article  ADS  Google Scholar 

  18. C. Ciuti, I. Carusotto, Phys. Rev. A 74(3), 033811 (2006). https://doi.org/10.1103/PhysRevA.74.033811

    Article  ADS  Google Scholar 

  19. J. Lolli, A. Baksic, D. Nagy, V.E. Manucharyan, C. Ciuti, Phys. Rev. Lett. 114(18), 183601 (2015). https://doi.org/10.1103/PhysRevLett.114.183601

    Article  ADS  Google Scholar 

  20. M. Cirio, K. Debnath, N. Lambert, F. Nori, Phys. Rev. Lett. 119(5), 053601 (2017). https://doi.org/10.1103/PhysRevLett.119.053601

    Article  ADS  Google Scholar 

  21. F. Bloch, A. Siegert, Phys. Rev. 57(6), 522 (1940). https://doi.org/10.1103/PhysRev.57.522

    Article  ADS  Google Scholar 

  22. P. Forn-Díaz, J. Lisenfeld, D. Marcos, J.J. García-Ripoll, E. Solano, C.J.P.M. Harmans, J.E. Mooij, Phys. Rev. Lett. 105(23), 237001 (2010). https://doi.org/10.1103/PhysRevLett.105.237001

    Article  ADS  Google Scholar 

  23. P. Alsing, D.S. Guo, H.J. Carmichael, Phys. Rev. A 45(7), 5135 (1992). https://doi.org/10.1103/PhysRevA.45.5135

    Article  ADS  Google Scholar 

  24. L.S. Bishop, J.M. Chow, J. Koch, A.A. Houck, M.H. Devoret, E. Thuneberg, S.M. Girvin, R.J. Schoelkopf, Nat. Phys. 5(2), 105 (2009). https://doi.org/10.1038/nphys1154

    Article  Google Scholar 

  25. H. Carmichael, Phys. Rev. X 5(3), 031028 (2015). https://doi.org/10.1103/PhysRevX.5.031028

    Google Scholar 

  26. J. Fink, A. Dombi, A. Vukics, A. Wallraff, P. Domokos, Phys. Rev. X 7(1), 011012 (2017). https://doi.org/10.1103/PhysRevX.7.011012

    Google Scholar 

  27. I. Pietikäinen, S. Danilin, K.S. Kumar, A. Vepsäläinen, D.S. Golubev, J. Tuorila, G.S. Paraoanu, Phys. Rev. B 96(2), 020501 (2017). https://doi.org/10.1103/PhysRevB.96.020501

    Article  ADS  Google Scholar 

  28. J.M. Fink, L. Steffen, P. Studer, L.S. Bishop, M. Baur, R. Bianchetti, D. Bozyigit, C. Lang, S. Filipp, P.J. Leek, A. Wallraff, Phys. Rev. Lett. 105(16), 163601 (2010). https://doi.org/10.1103/PhysRevLett.105.163601

    Article  ADS  Google Scholar 

  29. M.P. Silveri, J.A. Tuorila, E.V. Thuneberg, G.S. Paraoanu, Rep. Progress Phys. 80(5), 056002 (2017). https://doi.org/10.1088/1361-6633/aa5170

    Article  ADS  Google Scholar 

  30. J. Tuorila, M. Silveri, M. Sillanpää, E. Thuneberg, Y. Makhlin, P. Hakonen, Phys. Rev. Lett. 105(25), 257003 (2010). https://doi.org/10.1103/PhysRevLett.105.257003

    Article  ADS  Google Scholar 

  31. J. Tuorila, M. Silveri, M. Sillanpää, E. Thuneberg, Y. Makhlin, P. Hakonen, Supercond. Sci. Technol. 26(12), 124001 (2013). https://doi.org/10.1088/0953-2048/26/12/124001

    Article  ADS  Google Scholar 

  32. M.D. Reed, L. DiCarlo, B.R. Johnson, L. Sun, D.I. Schuster, L. Frunzio, R.J. Schoelkopf, Phys. Rev. Lett. 105(17), 173601 (2010). https://doi.org/10.1103/PhysRevLett.105.173601

    Article  ADS  Google Scholar 

  33. L.S. Bishop, E. Ginossar, S.M. Girvin, Phys. Rev. Lett. 105(10), 100505 (2010). https://doi.org/10.1103/PhysRevLett.105.100505

    Article  ADS  Google Scholar 

  34. M. Boissonneault, J.M. Gambetta, A. Blais, Phys. Rev. Lett. 105(10), 100504 (2010). https://doi.org/10.1103/PhysRevLett.105.100504

    Article  ADS  Google Scholar 

  35. M. Boissonneault, A.C. Doherty, F.R. Ong, P. Bertet, D. Vion, D. Esteve, A. Blais, Phys. Rev. A 85(2), 022305 (2012). https://doi.org/10.1103/PhysRevA.85.022305

    Article  ADS  Google Scholar 

  36. M. Boissonneault, J.M. Gambetta, A. Blais, Phys. Rev. A 86(2), 022326 (2012). https://doi.org/10.1103/PhysRevA.86.022326

    Article  ADS  Google Scholar 

  37. M. Grifoni, P. Hänggi, Phys. Rep. 304(5), 229 (1998). https://doi.org/10.1016/S0370-1573(98)00022-2

    Article  ADS  MathSciNet  Google Scholar 

  38. M. Silveri, J. Tuorila, M. Kemppainen, E. Thuneberg, Phys. Rev. B 87(13), 134505 (2013). https://doi.org/10.1103/PhysRevB.87.134505

    Article  ADS  Google Scholar 

  39. L.D. Landau, E.M. Lifshitz, Statistical Physics, Part I (Pergamon, Oxford, 1980)

    Google Scholar 

  40. R.H. Dicke, Phys. Rev. 93, 99 (1954). https://doi.org/10.1103/PhysRev.93.99

    Article  ADS  Google Scholar 

  41. M. Tavis, F.W. Cummings, Phys. Rev. 170, 379 (1968). https://doi.org/10.1103/PhysRev.170.379

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Discussions with D. Golubev and A. Vepsäläinen are gratefully acknowledged. This work was supported by the Academy of Finland (Projects No. 263457 and No. 135135), the Finnish Cultural Foundation, Centre of Quantum Engineering at Aalto University (Projects QMET and QMETRO), and the Centres of Excellence LTQ (Project No. 250280), and COMP (Projects No. 251748 and No. 284621). This work used the cryogenic facilities of the Low Temperature Laboratory at OtaNano/Aalto University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Pietikäinen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pietikäinen, I., Danilin, S., Kumar, K.S. et al. Multilevel Effects in a Driven Generalized Rabi Model. J Low Temp Phys 191, 354–364 (2018). https://doi.org/10.1007/s10909-018-1857-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-1857-8

Keywords

Navigation