Skip to main content
Log in

Transport and Quantum Coherence in Graphene Rings: Aharonov–Bohm Oscillations, Klein Tunneling, and Particle Localization

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Simulating quantum transport through mesoscopic, ring-shaped graphene structures, we address various quantum coherence and interference phenomena. First, a perpendicular magnetic field, penetrating the graphene ring, gives rise to Aharonov–Bohm oscillations in the conductance as a function of the magnetic flux, on top of the universal conductance fluctuations. At very high fluxes, the interference gets suppressed and quantum Hall edge channels develop. Second, applying an electrostatic potential to one of the ring arms, \(nn'n\)- or npn-junctions can be realized with particle transmission due to normal tunneling or Klein tunneling. In the latter case, the Aharonov–Bohm oscillations weaken for smooth barriers. Third, if potential disorder comes in to play, both Aharonov–Bohm and Klein tunneling effects rate down, up to the point where particle localization sets in.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  2. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  3. M.O. Goerbig, Rev. Mod. Phys. 83, 1193 (2011)

    Article  ADS  Google Scholar 

  4. Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)

    Article  MathSciNet  ADS  Google Scholar 

  5. S. Russo, J.B. Oostinga, D. Wehenkel, H.B. Heersche, S.S. Sobhani, L.M.K. Vandersypen, A.F. Morpurgo, Phys. Rev. B 77, 085413 (2008)

    Article  ADS  Google Scholar 

  6. M. Huefner, F. Molitor, A. Jacobsen, A. Pioda, C. Stampfer, K. Ensslin, T. Ihn, Phys. Status Solidi B 246, 2756 (2009)

    Article  ADS  Google Scholar 

  7. Y. Nam, J.S. Yoo, Y.W. Park, N. Lindvall, T. Bauch, A. Yurgens, Carbon 50, 5562 (2012)

    Article  Google Scholar 

  8. M. Huefner, F. Molitor, A. Jacobsen, A. Pioda, C. Stampfer, K. Ensslin, T. Ihn, New J. Phys. 12, 043054 (2010)

    Article  ADS  Google Scholar 

  9. D. Smirnov, H. Schmidt, R.J. Haug, Appl. Phys. Lett. 100, 203114 (2012)

    Article  ADS  Google Scholar 

  10. P. Recher, B. Trauzettel, A. Rycerz, Y.M. Blanter, C.W.J. Beenakker, A.F. Morpurgo, Phys. Rev. B 76, 235404 (2007)

    Article  ADS  Google Scholar 

  11. R. Jackiw, A.I. Milstein, S.Y. Pi, I.S. Terekhov, Phys. Rev. B 80, 033413 (2009)

    Article  ADS  Google Scholar 

  12. E.A. Stepanov, V.C. Zhukovsky, Phys. Rev. B 94, 094101 (2016)

    Article  ADS  Google Scholar 

  13. J. Schelter, D. Bohr, B. Trauzettel, Phys. Rev. B 81, 195441 (2010)

    Article  ADS  Google Scholar 

  14. J. Wurm, M. Wimmer, H.U. Baranger, K. Richter, Semicond. Sci. Technol. 25(3), 034003 (2010)

    Article  ADS  Google Scholar 

  15. C. Kreisbeck, T. Kramer, R.A. Molina, J. Phys. Condens. Matter 29, 155301 (2017)

    Article  ADS  Google Scholar 

  16. J. Schelter, P. Recher, B. Trauzettel, Solid State Commun. 152(15), 1411 (2012)

    Article  ADS  Google Scholar 

  17. M.I. Katsnelson, Graphene (Cambridge University Press, Cambridge, 2012)

    Book  Google Scholar 

  18. A. Rycerz, Acta Phys. Polon. A 115, 322 (2009)

    Article  Google Scholar 

  19. O. Klein, Z. Phys. 53, 157 (1928)

    Article  ADS  Google Scholar 

  20. M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Nat. Phys. 2, 620 (2006)

    Article  Google Scholar 

  21. N. Stander, B. Huard, D. Goldhaber-Gordon, Phys. Rev. Lett. 102, 026807 (2009)

    Article  ADS  Google Scholar 

  22. S.G. Nam, D.K. Ki, J.W. Park, Y. Kim, J.S. Kim, H.J. Lee, Nanotechnology 22, 415203 (2011)

    Article  Google Scholar 

  23. P.A.M. Dirac, Proc. R. Soc. Lond. A 117, 610 (1928)

    Article  ADS  Google Scholar 

  24. H. Weyl, Z. Phys. 56, 330 (1929)

    Article  ADS  Google Scholar 

  25. P.W. Anderson, Phys. Rev. 109, 1492 (1958)

    Article  ADS  Google Scholar 

  26. E. McCann, K. Kechedzhi, V.I. Fal’ko, H. Suzuura, T. Ando, B.L. Altshuler, Phys. Rev. Lett. 97, 146805 (2006)

    Article  ADS  Google Scholar 

  27. F.V. Tikhonenko, A.A. Kozikov, A.K. Savchenko, R.V. Gorbachev, Phys. Rev. Lett. 103, 226801 (2009)

    Article  ADS  Google Scholar 

  28. S. Adam, S. Cho, M.S. Fuhrer, S. Das Sarma, Phys. Rev. Lett. 101, 046404 (2008)

    Article  ADS  Google Scholar 

  29. G. Schubert, H. Fehske, Phys. Rev. Lett. 108, 066402 (2012)

    Article  ADS  Google Scholar 

  30. C.W. Groth, M. Wimmer, A.R. Akhmerov, X. Waintal, New J. Phys. 16(6), 063065 (2014)

    Article  ADS  Google Scholar 

  31. A. Weiße, G. Wellein, A. Alvermann, H. Fehske, Rev. Mod. Phys. 78, 275 (2006)

    Article  ADS  Google Scholar 

  32. D.A. Bahamon, A.L.C. Pereira, P.A. Schulz, Phys. Rev. B 79, 125414 (2009)

    Article  ADS  Google Scholar 

  33. P.R. Wallace, Phys. Rev. 71, 622 (1947)

    Article  ADS  Google Scholar 

  34. R. Peierls, Z. Phys. 80, 763 (1933)

    Article  ADS  Google Scholar 

  35. G. Schubert, J. Schleede, H. Fehske, Phys. Rev. B 79, 235116 (2009)

    Article  ADS  Google Scholar 

  36. R. Landauer, Philos. Mag. 21, 863 (1970)

    Article  ADS  Google Scholar 

  37. M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986)

    Article  ADS  Google Scholar 

  38. A. Pieper, G. Schubert, G. Wellein, H. Fehske, Phys. Rev. B 88, 195409 (2013)

    Article  ADS  Google Scholar 

  39. B. Sbierski, P.W. Brouwer, Phys. Rev. B 89, 155311 (2014)

    Article  ADS  Google Scholar 

  40. H. Fehske, G. Hager, A. Pieper, Phys. Status Solidi (b) 252, 1868 (2015)

    Article  ADS  Google Scholar 

  41. J. Schleede, G. Schubert, H. Fehske, Europhys. Lett. 90, 17002 (2010)

    Article  ADS  Google Scholar 

  42. G. Schubert, J. Schleede, K. Byczuk, H. Fehske, D. Vollhardt, Phys. Rev. B 81, 155106 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Deutsche Forschungsgemeinschaft through the Collaborative Research Center SFB 652 (Project B5) and the Competence Network for Scientific High-Performance Computing in Bavaria (KONWIHR III, Project PVSC-TM). HF acknowledges the hospitality at the Los Alamos National Laboratory where part of this work was performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Fehske.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filusch, A., Wurl, C., Pieper, A. et al. Transport and Quantum Coherence in Graphene Rings: Aharonov–Bohm Oscillations, Klein Tunneling, and Particle Localization. J Low Temp Phys 191, 259–271 (2018). https://doi.org/10.1007/s10909-017-1839-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-017-1839-2

Keywords

Navigation