Skip to main content
Log in

The Property of Phonon Gap in Iron-Based Superconductors FeSe, LiFeAs and SrFeAsF

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

First-principles calculations are performed for iron-based superconductors FeSe, LiFeAs and SrFeAsF, and the reasons of generation and loss of the phonon gaps in them are analyzed by analogy with electronic energy band theory. In iron-based superconductors FeSe and LiFeAs, lattice vibrations are affected by so strong changes in the periodic potential that the phonon spectra open a full gap. After considering electron–spin interactions, the enhancement of the periodic potential results in a broadening of the gap. From binary FeSe to ternary LiFeAs to quaternary SrFeAsF, the full phonon gap undergoes the process from decrease to disappearance, which is closely related to the frequencies overlapping of different atoms by vibrations. The fewer the material components and the larger the atomic number ratio, the more possible the production of the full phonon gap or the appearance of wider gap. In addition, the phonon gaps of FeSe and LiFeAs locate around the frequency of \(10^{12}\) Hz, whose filtering properties for elastic waves are hopefully to be applied in quantum acoustics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Hoyer, M.S. Scheurer, S.V. Syzranov et al., Phys. Rev. B 91, 054501 (2015)

    Article  ADS  Google Scholar 

  2. S.L. Yu, J.X. Li, Chin. Phys. B 22, 087411 (2013)

    Article  ADS  Google Scholar 

  3. R.M. Fernandes, A.J. Millis, Phys. Rev. Lett. 111, 127001 (2013)

    Article  ADS  Google Scholar 

  4. C.H. Lee, K. Kihou, A. Iyo et al., Solid State Commun. 152, 644–648 (2012)

    Article  ADS  Google Scholar 

  5. A.M. Zhang, Q.M. Zhang, Chin. Phys. B 22, 087103 (2013)

    Article  ADS  Google Scholar 

  6. B. Li, Z.W. Xing, M. Liu, Acta Phys. Sin. 60, 077402 (2011)

    Google Scholar 

  7. W. Wang, J.F. Sun, S.W. Li, Appl. Phys. Lett. 99, 082504 (2011)

    Article  ADS  Google Scholar 

  8. B. Li, Z.W. Xing, M. Liu, Appl. Phys. Lett. 98, 072506 (2011)

    Article  ADS  Google Scholar 

  9. W. Wang, J.F. Sun, S.W. Li, H.Y. Lu, Phys. C 472, 29–33 (2012)

    Article  ADS  Google Scholar 

  10. W. Wang, J.F. Sun, Q. Li, J. Low Temp. Phys. 173, 28–35 (2013)

    Article  ADS  Google Scholar 

  11. W. Wang, X.G. Yin, Acta Phys. Sin. 63, 097401 (2014)

    Google Scholar 

  12. X.S. Wen, J.H. Wen, D.L. Yu et al., Phononic Crystals (National Defense Industry Press, Beijing, 2009), pp. 16–17. (in Chinese)

    Google Scholar 

  13. P. Giannozzi, S. Baroni, N. Bonini et al., J. Phys. Condens. Matter 21, 395502 (2009)

    Article  Google Scholar 

  14. F.C. Hsu, J.Y. Luo, K.W. Yeh et al., Proc. Natl. Acad. Sci. 105, 14262 (2008)

    Article  ADS  Google Scholar 

  15. D. Phelan, J.N. Millican, E.L. Thomas et al., Phys. Rev. B 79, 014519 (2009)

    Article  ADS  Google Scholar 

  16. S. Matsuishi, Y. Inoue, T. Numura et al., J. Phys. Soc. Jpn. 77, 113709 (2008)

    Article  ADS  Google Scholar 

  17. M. Tegel, S. Johansson, V. Weiss et al., EPL 84, 67007 (2008)

    Article  ADS  Google Scholar 

  18. B. Li, Z.W. Xing, M. Liu, Acta Phys. Sin. 60(11), 077402 (2011)

    Google Scholar 

  19. J.H. Tapp, Z.J. Tang, B. Lv et al., Phys. Rev. B 78, 060505(R) (2008)

    Article  ADS  Google Scholar 

  20. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  21. S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001)

    Article  ADS  Google Scholar 

  22. X.D. Xie, D. Lu, Energy Band Theory in Solid (Fudan University Press, Shanghai, 1998), pp. 1–13. (in Chinese)

    Google Scholar 

  23. X.D. Xie, D. Lu, Energy Band Theory in Solid (Fudan University Press, Shanghai, 1998). (in Chinese)

    Google Scholar 

  24. G.Q. Huang, Z.W. Xing, D.Y. Xing, Phys. Rev. B 82, 014511 (2010)

    Article  ADS  Google Scholar 

  25. R. Mittal, M. Zbiri, S. Rols et al., Phys. Rev. B 79, 214514 (2009)

    Article  ADS  Google Scholar 

  26. M. Le Tacon, T.R. Forrest, Ch. Rüegg et al., Phys. Rev. B 80, 220504(R) (2009)

    Article  Google Scholar 

  27. B.H. Wang, J.L. Xiang, Phys. Eng. 11(4), 30–33 (2001). (in Chinese)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Research Project of Colleges in Anhui Province (Grant No. KJ2016A632), Anhui Provincial Natural Science Foundation (Grant No. 1508085QA20), Youth Research Projects at Huaibei Normal University (Grant No. 2014xq004), Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 15KJB140006) and NUPTSF (Grant No. NY214022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Li, B., He, J. et al. The Property of Phonon Gap in Iron-Based Superconductors FeSe, LiFeAs and SrFeAsF. J Low Temp Phys 186, 363–371 (2017). https://doi.org/10.1007/s10909-016-1722-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1722-6

Keywords

Navigation