Skip to main content
Log in

A Simple Model of Bose–Einstein Condensation of Interacting Particles

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A simple model of Bose–Einstein condensation of interacting particles is proposed. It is shown that in the condensate state the dependence of thermodynamic quantities on the interaction constant does not allow an expansion in powers of the coupling constant. Therefore, it is impossible to pass to the Einstein model of condensation in an ideal Bose gas by means of a limiting passage, setting the interaction constant to zero. The account for the interaction between particles eliminates difficulties in the description of condensation available in the model of an ideal gas, which are connected with the fulfillment of thermodynamic relations and an infinite value of the particle number fluctuation in the condensate phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.N. Bose, Plancks Gesetz und Lichtquanten-Hypothese. Z. Phys. 26, 178–181 (1924)

    Article  ADS  Google Scholar 

  2. A. Einstein, Quantum theory of the monatomic ideal gas. Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse 261–267 (1924)

  3. A. Einstein, Quantum theory of the monatomic ideal gas. Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse 3–14 (1925)

  4. A. Einstein, A Collection of Scientific Works, vol. 3 (Nauka, Moscow, 1966), pp. 481–511

  5. F. London, The \(\lambda \)-phenomenon of liquid helium and the Bose–Einstein degeneracy. Nature 141, 643 (1938)

    Article  ADS  Google Scholar 

  6. L. Tisza, Transport phenomena in helium II. Nature 141, 913 (1938)

    Article  ADS  Google Scholar 

  7. P.L. Kapitsa, Viscosity of liquid helium below the \(\lambda \)-point. Nature 141, 74 (1938)

    Article  ADS  Google Scholar 

  8. J.F. Allen, H. Jones, New phenomena connected with heat flow in helium II. Nature 141, 234 (1938)

    ADS  Google Scholar 

  9. L. Pitaevskii, S. Stringari, Bose–Einstein Condensation (Oxford University Press, New York, 2003)

    MATH  Google Scholar 

  10. C.H. Pethick, H. Smith, Bose–Einstein Condensation in Dilute Gases (Cambridge University Press, New York, 2002)

    Google Scholar 

  11. L.P. Pitaevskii, Bose–Einstein condensates in a laser radiation field. Phys. Usp. 49, 333–351 (2006)

    Article  ADS  Google Scholar 

  12. N.N. Bogolyubov, On the theory of superfluidity. J. Phys. USSR 11, 23–32 (1947)

    MathSciNet  Google Scholar 

  13. N.N. Bogolyubov, On the theory of superfluidity. Izv. Akad. Nauk. SSSR Ser. Fiz. 11, 77–90 (1947)

    MathSciNet  Google Scholar 

  14. E.P. Gross, Structure of a quantized vortex in boson systems. IL Nuovo Cimento 20, 454–477 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. L.P. Pitaevskii, Vortex lines in an imperfect Bose gas. Sov. Phys. JETP 13, 451–454 (1961)

    MathSciNet  Google Scholar 

  16. Yu.M. Poluektov, Isobaric heat capacity of an ideal Bose gas. Russ. Phys. J. 44(6), 627–630 (2001)

  17. L.D. Landau, E.M. Lifshitz, Statistical Physics, vol. 5 (Butterworth-Heinemann, Oxford, 1980)

    MATH  Google Scholar 

  18. Yu.M. Poluektov, Self-consistent field model for spatially inhomogeneous Bose systems. Low Temp. Phys. 28, 429–441 (2002)

  19. Yu.M. Poluektov, On the quantum-field description of many-particle Bose systems with spontaneously broken symmetry. Ukr. J. Phys. 52(6), 579–595 (2007). arXiv:1306.2103 [cond-mat.stat-mech]

  20. S.T. Beliaev, Application of the methods of quantum field theory to a system of bosons. Sov. Phys. JETP 7, 289–299 (1958)

    MathSciNet  Google Scholar 

  21. N.M. Hugenholtz, D. Pines, Ground-state energy and excitation spectrum of a system of interacting bosons. Phys. Rev. 116, 489–506 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. M. Buckingham, W. Fairbank, The nature of lambda-transition in liquid helium. Prog. Low Temp. Phys. 3, 80–112 (1961)

    Article  Google Scholar 

  23. K. Huang, Statistical Mechanics (Wiley, London, 1987)

    MATH  Google Scholar 

  24. V.I. Yukalov, Fluctuations of composite observables and stability of statistical systems. Phys. Rev. E 72, 066119 (2005)

    Article  ADS  Google Scholar 

  25. V.I. Yukalov, Modified semiclassical approximation for trapped Bose gases. Phys. Rev. A 72, 033608 (2005)

    Article  ADS  Google Scholar 

  26. P.G. de Gennes, Superconductivity of Metals and Alloys (Benjamin, New York, 1966)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Poluektov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poluektov, Y.M. A Simple Model of Bose–Einstein Condensation of Interacting Particles. J Low Temp Phys 186, 347–362 (2017). https://doi.org/10.1007/s10909-016-1715-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1715-5

Keywords

Navigation