Skip to main content
Log in

Analysis of Photonic Band Gaps in a Two-Dimensional Triangular Lattice with Superconducting Hollow Rods

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this work, we use the plane wave expansion method to calculate photonic band structures in two-dimensional photonic crystals which consist of high-temperature superconducting hollow rods arranged in a triangular lattice. The variation of the photonic band structure with respect to both, the inner radius and the system temperature, is studied, taking into account temperatures below the critical temperature of the superconductor in the low frequencies regime and assuming E polarization of the incident light. Permittivity contrast and nontrivial geometry of the hollow rods lead to the appearance of new band gaps as compared with the case of solid cylinders. Such band gaps can be modulated by means of the inner radius and system temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)

    Article  ADS  Google Scholar 

  2. S. John, Phys. Rev. Lett. 58, 2486 (1987)

    Article  ADS  Google Scholar 

  3. P. Bermel, C. Luo, L. Zeng, L.C. Kimerling, J.D. Joannopoulos, Opt. Express 15(25), 16986 (2007)

    Article  ADS  Google Scholar 

  4. C. Wiesmann, K. Bergenek, N. Linder, U.T. Schwarz, Laser Photon. Rev. 3, 262 (2009)

    Article  Google Scholar 

  5. Y. Fan, X. Wang, Pro. Eng. 29, 2332 (2012)

    Article  Google Scholar 

  6. F. Poletti, N.V. Wheeler, M.N. Petrovich, N. Baddela, E. Numkam, J.R. Hayes, D.R. Gray, Z. Li, R. Slavík, J. Richardson Nat. Photonics 7, 279 (2013)

    Article  ADS  Google Scholar 

  7. Y. Tanaka, Y. Kawamoto, M. Fujita, S. Noda, Opt. Express 21(17), 20111 (2013)

    Article  ADS  Google Scholar 

  8. M.M. Sigalas, C.T. Chan, K.M. Ho, C.M. Soukoulis, Phys. Rev. B 52, 11744 (1995)

    Article  ADS  Google Scholar 

  9. V. Kuzmiak, A.A. Maradudin, F. Pincemin, Phys. Rev. B 50, 16835 (1994)

    Article  ADS  Google Scholar 

  10. K. Sakoda, N. Kawai, T. Ito, A. Chutinan, S. Noda, T. Mitsuyu, K. Hirao, Phys. Rev. B 64, 045116 (2001)

    Article  ADS  Google Scholar 

  11. A. Pimenov, A. Loidl, Phys. Rev. Lett 96, 063903 (2006)

    Article  ADS  Google Scholar 

  12. S. Belousov, M. Bogdanova, A. Deinega, S. Eyderman, I. Valuev, Y. Lozovik, I. Polischuk, B. Potapkin, Phys. Rev. B 86, 174201 (2012)

    Article  ADS  Google Scholar 

  13. W.M. Lee, P.M. Hui, Phys. Rev. B 51, 8634 (1995)

    Article  ADS  Google Scholar 

  14. A.N. Poddubny, E.L. Ivchenkoa, Y.E. Lozovik, Solid State Commun. 146, 143 (2008)

    Article  ADS  Google Scholar 

  15. C.H. Raymond Ooi, T.C. Au Yeung, C.H. Kam, T.K. Lim, Phys. Rev. B 61, 5920 (2000)

    Article  ADS  Google Scholar 

  16. H. Takeda, K. Yoshino, Phys. Rev. B 67, 245109 (2003)

    Article  ADS  Google Scholar 

  17. H. Takeda, K. Yoshino, Phys. Rev. B 70, 085109 (2004)

    Article  ADS  Google Scholar 

  18. T. Peia, Y. Huang, J. Appl. Phys. 101, 084502 (2007)

    Article  ADS  Google Scholar 

  19. N.N. Dadoenkova, A.E. Zabolotin, I.L. Lyubchanskii, Y.P. Lee, Th Rasing, J. Appl. Phys. 108, 093117 (2010)

    Article  ADS  Google Scholar 

  20. C.H. Raymond, Q. Ooi, J. Appl. Phys. 110, 063513 (2011)

    Article  ADS  Google Scholar 

  21. W. Liu, F. Pan, L. Cai, Phys. C 500, 4 (2014)

    Article  ADS  Google Scholar 

  22. G.N. Pandeya, K.B. Thapa, S.P. Ojha, Optik 125, 252 (2014)

    Article  ADS  Google Scholar 

  23. J. Barvestani, Phys. B 457, 218 (2015)

    Article  ADS  Google Scholar 

  24. M. Zamani, Phys. C 520, 42 (2016)

    Article  Google Scholar 

  25. B. Dietz, T. Klaus, M. Miski-Oglu, A. Richter, Phys. Rev. B 91, 035411 (2015)

    Article  ADS  Google Scholar 

  26. T. Pana, F. Zhuang, Z. Li, Solid State Commun. 129, 501 (2004)

    Article  ADS  Google Scholar 

  27. T. Trifonov, L.F. Marsal, A. Rodríguez, J. Pallarès, R. Alcubilla, Phys. Rev. B 70, 195108 (2004)

    Article  ADS  Google Scholar 

  28. H. Xiao, D.Z. Yao, C.X. Wang, S. Chen, Eur. Phys. J. B 64, 219 (2008)

    Article  ADS  Google Scholar 

  29. C.A. Duque, N. Porras-Montenegro, S.B. Cavalcanti, L.E. Oliveira, J. Appl. Phys. 105, 034303 (2009)

    Article  ADS  Google Scholar 

  30. D. Liu, H. Liu, Y. Gao, Solid State Commun. 172, 10 (2013)

    Article  ADS  Google Scholar 

  31. B.F. Diaz-Valencia, J.M. Calero, Phys. C 505, 74 (2014)

    Article  ADS  Google Scholar 

  32. P. Halevi, F. Ramos-Mendieta, Phys. Rev. Lett. 85, 1875 (2000)

    Article  ADS  Google Scholar 

  33. H. Shibata, T. Yamada, Phys. Rev. B 54, 7500 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor Nelson Porras-Montenegro for a critical reading of the paper. This research was partially supported by Vicerrectoría de Investigaciones (research proyect CI71025), and CENM at Universidad del Valle. B.F. D-V acknowledges support from CIBioFi, and the Colombian Science, Technology and Innovation Fund-General Royalties System (Fondo CTeI- SGR) under contract No. BPIN 2013000100007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Calero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diaz-Valencia, B.F., Calero, J.M. Analysis of Photonic Band Gaps in a Two-Dimensional Triangular Lattice with Superconducting Hollow Rods. J Low Temp Phys 186, 275–284 (2017). https://doi.org/10.1007/s10909-016-1701-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1701-y

Keywords

Navigation