Skip to main content
Log in

Analysis of Photonic Bandgap Extension in One-Dimensional Quasiperiodic Superconducting Photonic Slabs

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

One-dimensional superconducting photonic slabs made of alternated layers of isotropic dielectric (SiO2) and a high-Tc superconductor (YBCO) are theoretically investigated by the Gorter Casimir two fluid model (GCTFM) and the transfer matrix method (TMM). The proposed photonic quasicrystals are built according to the inflation rule of quasiperiodic sequences. The enhancement of the photonic band gap is theoretically investigated. Extending photonic band gap (E-PBG) is achieved for suitable quasiperiodic chains. The bandwidth of the photonic band gap can be enhanced by changing the temperature of superconductor, parameter of quasiperiodic sequence. An overall photonic band gap is obtained in the visible frequency range and can be enhanced by applying a typical thickness’ deformation along the superconducting photonic sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang, Y., WU, Z., Cao, Y., Zhang, H.: Optical properties of one-dimensional Fibonacci quasi-periodic graphene photonic crystal. Opt. Commun. 338, 168–173 (2015)

    Article  ADS  Google Scholar 

  2. Trabelsi, Y., Bouazzi, Y., Ben Ali, N., Kanzari, M.: Narrow stop band optical filter using one-dimensional regular Fibonacci/Rudin Shapiro photonic quasicrystals. Opt. Quant. Electron. 48, (2016)

  3. Trabelsi, Y.: Tunable properties of omnidirectional band gap based on photonic quasicrystals containing superconducting material. Opt. Quant. Electron. 53, 1–10 (2021)

    Article  Google Scholar 

  4. Edagawa, K.: Photonic crystals, amorphous materials, and quasicrystals. Sci. Technol. Adv. Mater. 15, 1–15 (2014)

    Article  Google Scholar 

  5. Ali, N.B., Dhasarathan, V., Alsaif, H., Trabelsi, Y., TK Nguyen, Y.B.: Design of output-graded narrow polychromatic filter by using photonic quasicrystals. Phys. B Condens. Matter. 582, 411918

  6. Gómez-Urreaa, H.A., Escorcia-Garcíab, J., Duquec, C.A., Mora-Ramosd, M.E.: Analysis of light propagation in quasiregular and hybrid Rudin–Shapiro one-dimensional photonic crystals with superconducting layers. Photonics Nanostruct. Fundam. Appl. 27, 1–10 (2017)

    Article  ADS  Google Scholar 

  7. Trabelsi, Y., Ben Ali, N., Bouazzi, Y., Kanzari, M.: Microwave transmission through one-dimensional hybrid quasi- regular (Fibonacci and Thue-Morse)/periodic structures. Photonic Sens. 3, 246–255 (2013)

    Article  ADS  Google Scholar 

  8. Feng, Z.H., Liu, S.-B., Yang, H., Li, H.-M.: Investigating the omnidirectional photonic band gap in one-dimensional superconductor–dielectric photonic crystals with a modified ternary Fibonacci quasiperiodic structure. J. Supercond. Nov. Magn. 26, (2013)

  9. Zhang, H.-F., Liu, S.-B., Kong, X.-K., Bian, B.-R., Dai, Y.: Omnidirectional photonic band gaps enlarged by Fibonacci quasi-periodic one-dimensional ternary superconductor photonic crystals Author links open overlay panel. Solid State Commun. 152, 2113–2119 (2012)

    Article  ADS  Google Scholar 

  10. Li, C.-z., Liu, S.-b., Kong, X.-k., Bian, B.-r., Zhang, X.-y.: Tunable photonic bandgap in a one-dimensional superconducting-dielectric superlattice. Appl. Opt. 16, 2370–2375 (2011)

    Article  ADS  Google Scholar 

  11. Aly, A.H., Ryu, S.-W., Hsu, H.-T., Wu, C.-J.: THz transmittance in one-dimensional superconducting nanomaterial-dielectric superlattice. Mater. Chem. Phys. 113, 382–384 (2009)

    Article  Google Scholar 

  12. Aly, A.H., Mohamed, D., Mohaseb, M.A., Abd El-Gawad, N.S., Trabelsi, Y.: RSC Advances, 10. In: 31765 – 31772 (2020)

    Google Scholar 

  13. Segovia-Chaves, F., Vinck-Posada, H., Trabelsi, Y., Ben Ali, N.: Transmittance spectrum in a one-dimensional photonic crystal with Fibonacci sequence superconductor–semiconductor. Optik - International Journal for Light and Electron Optics. 217, 164803 (2020)

    Article  Google Scholar 

  14. Ji, J.W., Jin-Xia, G.: Transmission properties of Fibonacci quasi-periodic one dimensional superconducting photonic crystals. Optik - International Journal for Light and Electron Optics. 123 (2012)

  15. Trabelsi, Y., Ben Ali, N., Belhadj, W., Kanzari, M.: Photonic band gap properties of one-dimensional generalized Fibonacci photonic quasicrystal containing superconductor material. J. Supercond. Nov. Magn. 32, 1–7 (2019)

    Article  Google Scholar 

  16. Segovia-Chaves, F., Vinck-Posada, H.: Tuning of transmittance spectrum in a one-dimensional superconductor semiconductor photonic crystal. Phys. B Condens. Matter. 543, 7–13 (2018)

    Article  ADS  Google Scholar 

  17. Liu, Y., Yi, L.: Tunable terahertz multichannel filter based on one-dimensional superconductor-dielectric photonic crystals. J. Appl. Phys. 116, 2231102 (2014)

    Google Scholar 

  18. Wu, J., Gao, J.: Analysis of temperature-dependent optical properties in 1D ternary superconducting photonic crystal with mirror symmetry. J. Supercond. Nov. Magn. 28, (2015)

  19. Wu, J., Gao, J.: Temperature- dependent optical properties of defect mode in dielectric photonic crystal heterostructure containing a superconducting layer. Mater. Chem. Phys. 171, 91–96 (2016)

    Article  ADS  Google Scholar 

  20. Herrera, A.Y., Calero, J., Porras Montenegro, N.: Dependence of transmittance in a 1D superconductor-semiconductor photonic crystal. J. Appl. Phys. 123, 033101 (2018)

    Article  ADS  Google Scholar 

  21. El-Khozondar, H.J., Mahalakshmi, P., El-Khozondar, R.J., Ramanujam, N.R., Amirie, I.S., Yupapin, P.: Design of one dimensional refractive index sensor using ternary photonic crystal waveguide for plasma blood samples applications. Physica E: Low-dimensional Systems and Nanostructures. 111, 29–36 (2019)

    Article  ADS  Google Scholar 

  22. Trabelsi, Y., Ben Ali, N., Kanzari, M.: Tunable narrowband optical filters using superconductor / dielectric generalized Thue-Morse photonic crystals. Microelectron. Eng. 213, 41–46 (2019)

    Article  Google Scholar 

  23. Rahimi, H.: Analysis of photonic spectra in Thue–Morse, Double-Period and Rudin–Shapiro quasirregular structures made of high temperature superconductors in visible range. Opt. Mater. 57, 264 (2016)

    Article  ADS  Google Scholar 

  24. Baraket, Z., Zaghdoudi, J., Kanzari, M.: Investigation of the 1D symmetrical linear graded superconductor-dielectric photonic crystals and its potential applications as an optimized low temperature sensors. Opt. Mater. 64, 147 (2017)

    Article  ADS  Google Scholar 

  25. Trabelsi, Y.: Output multichannel optical filter based on hybrid photonic quasicrystals containing a high-Tc superconductor. Photonics Nanostruct. Fundam. Appl. 36, 100724 (2019)

    Article  Google Scholar 

  26. Trabelsi, Y., Ali, N.B., Aly, A.H., Kanzari, M.: Tunable high Tc superconducting photonic band gap resonators based on hybrid quasi-periodic multilayered stacks. Physica C: Superconductivity and its Applications. 1353706 (2020)

Download references

Acknowledgements

The authors are thankful to the Deanship of Scientific Research-Research Center at King Khalid University in Saudi Arabia for funding this research (code number: R.G.P.1/182/41).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youssef Trabelsi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trabelsi, Y., Ali, N.B., Segovia-Chaves, F. et al. Analysis of Photonic Bandgap Extension in One-Dimensional Quasiperiodic Superconducting Photonic Slabs. J Supercond Nov Magn 34, 1885–1891 (2021). https://doi.org/10.1007/s10948-021-05868-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05868-0

Keywords

Navigation