Skip to main content
Log in

Pseudogap Phenomena Near the BKT Transition of a Two-Dimensional Ultracold Fermi Gas in the Crossover Region

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We investigate strong-coupling properties of a two-dimensional ultracold Fermi gas in the normal phase. In the three-dimensional case, it has been shown that the so-called pseudogap phenomena can be well described by a (non-self-consistent) T-matrix approximation (TMA). In the two-dimensional case, while this strong-coupling theory can explain the pseudogap phenomenon in the strong-coupling regime, it unphysically gives large pseudogap size in the crossover region, as well as in the weak-coupling regime. We show that this difficulty can be overcome when one improves TMA to include higher-order pairing fluctuations within the framework of a self-consistent T-matrix approximation (SCTMA). The essence of this improvement is also explained. Since the observation of the BKT transition has recently been reported in a two-dimensional \(^6\hbox {Li}\) Fermi gas, our results would be useful for the study of strong-coupling physics associated with this quasi-long-range order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. V. Gurarie, L. Radzihovsky, Ann. Phys. 332, 2 (2007)

    Article  ADS  Google Scholar 

  2. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  3. J.T. Stewart, J.P. Gaebler, D.S. Jin, Nature 454, 744 (2008)

    Article  ADS  Google Scholar 

  4. J.P. Gaebler et al., Nat. Phys. 6, 569 (2010)

    Article  Google Scholar 

  5. K. Martiyanov, V. Makhalov, A. Turlapov, Phys. Rev. Lett. 105, 030404 (2010)

    Article  ADS  Google Scholar 

  6. M. Feld et al., Nature 480, 75 (2011)

    Article  ADS  Google Scholar 

  7. B. Fröhlich et al., Phys. Rev. Lett. 106, 105301 (2011)

    Article  ADS  Google Scholar 

  8. A.T. Sommer et al., Phys. Rev. Lett. 108, 045302 (2012)

    Article  ADS  Google Scholar 

  9. V. Makhalov, K. Martiyanov, A. Turlapov, Phys. Rev. Lett. 112, 045301 (2014)

    Article  ADS  Google Scholar 

  10. M.G. Ries et al., Phys. Rev. Lett. 114, 230401 (2015)

    Article  ADS  Google Scholar 

  11. P.A. Murthy et al., Phys. Rev. Lett. 115, 010401 (2015)

    Article  ADS  Google Scholar 

  12. K. Fenech et al., Phys. Rev. Lett. 116, 045302 (2016)

    Article  ADS  Google Scholar 

  13. V.L. Berezinskii, Sov. Phys. JETP 32, 493 (1971)

    ADS  MathSciNet  Google Scholar 

  14. J.M. Kosterlitz, D.J. Thouless, J. Phys. C 6, 1181 (1973)

    Article  ADS  Google Scholar 

  15. S. Tsuchiya, R. Watanabe, Y. Ohashi, Phys. Rev. A 80, 033613 (2009)

    Article  ADS  Google Scholar 

  16. Q.J. Chen, K. Levin, Phys. Rev. Lett. 102, 190402 (2009)

    Article  ADS  Google Scholar 

  17. H. Hu, X.-J. Liu, P.D. Drummond, H. Dong, Phys. Rev. Lett. 104, 240407 (2010)

    Article  ADS  Google Scholar 

  18. F. Marsiglio et al., Phys. Rev. B 91, 054509 (2015)

    Article  ADS  Google Scholar 

  19. M. Matsumoto, D. Inotani, Y. Ohashi, Phys. Rev. A 93, 013619 (2016)

    Article  ADS  Google Scholar 

  20. S.A. Morgan, M.D. Lee, K. Burnett, Phys. Rev. A 65, 022706 (2002)

    Article  ADS  Google Scholar 

  21. R. Haussmann, Z. Phys. B: Condens. Matter 91, 291 (1993)

    Article  ADS  Google Scholar 

  22. M. Bauer, M.M. Parish, T. Enss, Phys. Rev. Lett. 112, 135302 (2014)

    Article  ADS  Google Scholar 

  23. B.C. Mulkerin et al., Phys. Rev. A 92, 063636 (2015)

    Article  ADS  Google Scholar 

  24. N.D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966)

    Article  ADS  Google Scholar 

  25. P.C. Hohenberg, Phys. Rev. 158, 383 (1967)

    Article  ADS  Google Scholar 

  26. D.J. Thouless, Ann. Phys. 10, 553 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  27. J.R. Schrieffer, Theory of Superconductivity (Addison-Wesley, New York, 1964)

    MATH  Google Scholar 

  28. K. Miyake, Prog. Theor. Phys. 69, 6 (1983)

    Article  Google Scholar 

Download references

Acknowledgments

We thank H. Tajima, T. Yamaguchi, P. van Wyk , and D. Kagamihara for discussions. M. M. was supported by Graduate School Doctoral Student Aid Program from Keio University. R. H. was supported by a Grant-in-Aid for JSPS fellows. D. I. was supported by Grant-in-Aid for Young Scientists (B) (No. 16K17773) from JSPS in Japan. This work was supported by the KiPAS project in Keio university. Y.O was supported by Grant-in-Aid for Scientific Research from MEXT and JSPS in Japan (Nos. 15K00178, 15H00840, 16K05503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Matsumoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsumoto, M., Hanai, R., Inotani, D. et al. Pseudogap Phenomena Near the BKT Transition of a Two-Dimensional Ultracold Fermi Gas in the Crossover Region. J Low Temp Phys 187, 668–676 (2017). https://doi.org/10.1007/s10909-016-1694-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1694-6

Keywords

Navigation