Skip to main content
Log in

Crossover from BCS superconductivity to Bose-Einstein condensation: A self-consistent theory

  • Original Contributions
  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

A dilute three-dimensional Fermi liquid is considered with an instantaneous attractive short-range interaction. Two sets of self-consistent equations for the temperature dependent fermion Greens functiong and the four-point vertex function Γ are derived by field theoretic means. The interaction is taken into account using the results of low energys-wave scattering theory. The crossover region between BCS superconductivity and Bose-Einstein condensation of tightly bound pairs is located near the threshold where in the two-particle scattering problem a virtual or quasi-stationary state turns into a bound state. We show how from our self-consistent equations the BCS theory and the theory of a superfluid Bose gas can be recovered in the weak and strong coupling limit, respectively. In the strong coupling limit we find that there is a repulsive interaction between the composite bosons due to the Pauli exclusion principle. It is described by a positive scattering lengtha B which is twice the scattering length of the fermions,a B =2a F . Furthermore we find that this interaction reduces the Bose-Einstein transition temperature to leading order by ΔT c /T c, BE =−(k F a F )3/3π. We show that most of the previous theories of the crossover scenario can be obtained from our theory in mean-field approximation neglecting self consistency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leggett, A.J.: In: Pekalski, A., Przystawa, J. (eds.) Modern trends in the theory of condensed matter, p. 13 Berlin, Heidelberg, New York: Springer 1980

    Google Scholar 

  2. Randeria, M., Duan, J.-M., Shieh, L.-Y.: Phys. Rev. Lett.62, 981 (1989); Phys. Rev.41, 327 (1990)

    Google Scholar 

  3. Nozières, P., Schmitt-Rink, S.: J. Low Temp. Phys.59, 195 (1984)

    Google Scholar 

  4. Thouless, D.J.: Ann. Phys. (N.Y.)10, 553 (1960)

    Google Scholar 

  5. Drechsler, M., Zwerger, W.: Ann. Phys.1, 15 (1992)

    Google Scholar 

  6. Drechsler, M.: Diploma thesis, Universität Göttingen 1991 (unpublished)

  7. Tokumitu, A., Miyake, K., Yamada, K.: J. Phys. Soc. Jpn.60, 380 (1991); Prog. Theor. Phys. Suppl.106 63 (1991)

    Google Scholar 

  8. Moriya, T.: Spin fluctuations in itinerant electron magnetism, Chap. 4. Berlin, Heidelberg, New York: Springer 1985

    Google Scholar 

  9. Scalettar, R.T., Loh, E.Y., Gubernatis, J.E., Moreo, A., White, S.R., Scalapino, D.J., Sugar, R.L., Dagotto, E.: Phys. Rev. Lett.62, 1407, (1989)

    Google Scholar 

  10. Sofo, J.O., Balseiro, C.A., Castillo, H.E.: Phys. Rev. B45, 9860 (1992)

    Google Scholar 

  11. Denteneer, P.J.H., Guozong, A., Leeuwen, J.M.J., van: Europhys. Lett.16, 5 (1991)

    Google Scholar 

  12. Frésard, R., Glaser, B., Wölfle, P.: (Preprint 1992)

  13. Moulopoulos, K., Ashcroft, N.W.: Phys. Rev. Lett.66, 2915 (1991)

    Google Scholar 

  14. Galitskii, V.M.: Sov. Phys. JETP34, 104 (1958)

    Google Scholar 

  15. Matsubara, T.: Prog. Theor. Phys.14, 351 (1955)

    Google Scholar 

  16. Abrikosov, A.A., Gorkov, L.P., Dzyaloshinskii, I.E.: Methods of quantum field theory in statistical physics. New York: Dover 1963

    Google Scholar 

  17. Fetter, A.L., Walecka, J.D.: Quantum theory of many-particle systems. New York: McGraw Hill 1971

    Google Scholar 

  18. Nambu, Y.: Phys. Rev.117, 648 (1960)

    Google Scholar 

  19. Landau, L.D., Lifshitz, E.M.: Quantum mechanics, chapter XIV, London: Pergamon Press 1958

    Google Scholar 

  20. Gorkov, L.P., Melik-Barkhudarov, T.K.: Sov. Phys. JETP10, 1018 (1961)

    Google Scholar 

  21. Adawi, I.: J. Math. Phys.12, 358 (1971)

    Google Scholar 

  22. Handbook of mathematical functions. Abramowitz, M., Stegun, I.A. (eds.) New York: Dover 1965

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haussmann, R. Crossover from BCS superconductivity to Bose-Einstein condensation: A self-consistent theory. Z. Physik B - Condensed Matter 91, 291–308 (1993). https://doi.org/10.1007/BF01344058

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01344058

Keywords

Navigation