Skip to main content

Advertisement

Log in

Observation of the Field, Current and Force Distributions in an Optimized Superconducting Levitation with Translational Symmetry

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The superconducting levitation realized by immersing the high-temperature superconductors (HTSs) into nonuniform magnetic field is deemed promising in a wide range of industrial applications such as maglev transportation and kinetic energy storage. Using a well-established electromagnetic model to mathematically describe the HTS, we have developed an efficient scheme that is capable of intelligently and globally optimizing the permanent magnet guideway (PMG) with single or multiple HTSs levitated above for the maglev transportation applications. With maximizing the levitation force as the principal objective, we optimized the dimensions of a Halbach-derived PMG to observe how the field, current and force distribute inside the HTSs when the optimized situation is achieved. Using a pristine PMG as a reference, we have analyzed the critical issues for enhancing the levitation force through comparing the field, current and force distributions between the optimized and pristine PMGs. It was also found that the optimized dimensions of the PMG are highly dependent upon the levitated HTS. Moreover, the guidance force is not always contradictory to the levitation force and may also be enhanced when the levitation force is prescribed to be the principle objective, depending on the configuration of levitation system and lateral displacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.S. Wang, S.Y. Wang, Y.W. Zeng et al., The first man-loading high temperature superconducting Maglev test vehicle in the world. Phys. C 378–381, 809–914 (2002)

    Article  Google Scholar 

  2. L. Schultz, O. de Haas, P. Verges, C. Beyer, S. Rohlig, H. Olisen, L. Kuhn, D. Berger, U. Noteboom, U. Funk, Superconductively levitated transport system–the supratrans project. IEEE Trans. Appl. Supercond. 15(2), 2301–2305 (2005)

    Article  Google Scholar 

  3. A super chute [The Big Picture]. IEEE Spectr. 51(7) (2014)

  4. G.G. Sotelo, R.A.H. de Oliveira, F.S. Costa, D.H.N. Dias, R. de Andrade Jr., R.M. Stephan, A full scale superconducting magnetic levitation (MagLev) vehicle operational line. IEEE Trans. Appl. Supercond. 25, 3601005 (2015)

    Article  Google Scholar 

  5. H. Jing, J. Wang, S. Wang, L. Wang, L. Liu, J. Zheng, Z. Deng, G. Ma, Y. Zhang, J. Li, A two-pole Halbach permanent magnet guideway for high temperature superconducting Maglev vehicle. Phys. C 463–465, 426 (2007)

    Article  Google Scholar 

  6. W. Liu, S. Wang, H. Jing, J. Zheng, M. Jiang, J. Wang, Levitation performance of YBCO bulk in different applied magnetic fields. Phys. C 468, 974 (2008)

    Article  ADS  Google Scholar 

  7. Z. Deng, J. Wang, J. Zheng, H. Jing, Y. Lu, G. Ma, L. Liu, W. Liu, Y. Zhang, S. Wang, High-efficiency and low-cost permanent magnet guideway consideration for high-Tc superconducting Maglev vehicle practical application. Supercond. Sci. Technol. 21, 115018 (2008)

    Article  ADS  Google Scholar 

  8. G.-T. Ma, Considerations on the finite-element simulation of high-temperature superconductors for magnetic levitation purposes. IEEE Trans. Appl. Supercond. 23, 3601609 (2013)

    Article  Google Scholar 

  9. G.-T. Ma, H. Liu, X.-T. Li, H. Zhang, Y.-Y. Xu, Numerical simulations of the mutual effect among the superconducting constituents in a levitation system with translational symmetry. J. Appl. Phys. 115, 083908 (2014)

    Article  ADS  Google Scholar 

  10. C.-Q. Ye, G.-T. Ma, K. Liu, J.-S. Wang, Intelligent optimization of a HTS Maglev system with translational symmetry. IEEE Trans. Appl. Supercond. 26, 3600305 (2016)

    Google Scholar 

  11. E.S. Motta, D.H.N. Dias, G.G. Sotelo, H.O.C. Ramos, J.H. Norman, R.M. Stephan, Optimization of a linear superconducting levitation system. IEEE Trans. Appl. Supercond. 21, 3548 (2011)

    Article  ADS  Google Scholar 

  12. Y. Lu, G. Liu, Y. Qin, Levitation force investigation of bulk HTSC above Halbach PMG with different cross-section physical dimensions by 3D-modeling numerical method. J. Low Temp. Phys. 177, 17–27 (2014)

    Article  ADS  Google Scholar 

  13. N. Del-Valle, A. Sanchez, C. Navau, D.-X. Chen, Magnetic guideways for superconducting maglevs: comparison between Halbach-type and conventional arrangements of permanent magnets. J. Low Temp. Phys. 162, 62–71 (2011)

    Article  ADS  Google Scholar 

  14. J. Zhang, Y. Zeng, J. Cheng, X. Tang, Optimization of permanent magnet guideway for HTS Maglev vehicle with numerical methods. IEEE Trans. Appl. Supercond. 18, 1681 (2008)

    Article  ADS  Google Scholar 

  15. G.-T. Ma, J.-S. Wang, S.-Y. Wang, 3-D Finite-Element Modelling of a Maglev System Using Bulk High-Tc Superconductor and Its Application Applications of High-Tc Superconductivity (INTECH, Rijeka, 2011)

    Google Scholar 

  16. G.-T. Ma, C.-Q. Ye, K. Liu, G.-M. Mei, H. Zhang, X.-T. Li, Geometrical effects on the levitation capability of multiseeded Y–Ba–Cu–O block. IEEE Trans. Appl. Supercond. 26, 3600205 (2016)

    Google Scholar 

  17. G.-T. Ma, J.-S. Wang, S.-Y. Wang, 3-D modeling of high-tc superconductor for magnetic levitation/suspension application-part I: introduction to the method. IEEE Trans. Appl. Supercond. 20, 2219 (2010)

    Article  ADS  Google Scholar 

  18. F. Grilli, S. Stavrev, Y.L. Floch, M. Costa-Bouzo, E. Vinot, I. Klutsch, G. Meunier, P. Tixador, B. Dutoit, Finite-Element method modeling of Superconductors: from 2-D to 3-D. IEEE Trans. Appl. Supercond. 15, 17 (2005)

    Article  Google Scholar 

  19. J.R. Hull, Superconducting bearings. Supercond. Sci. Technol. 13(2), R1–R15 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  20. J.H. Holland, Adaption in Natural and Artificial Systems (MIT Press, Boston, 1975)

    MATH  Google Scholar 

  21. N. Del-Valle, A. Sanchez, C. Navau, D.X. Chen, A theoretical study of the influence of superconductor and magnet dimensions on the levitation force and stability of maglev systems. Supercond. Sci. Technol. 21, 125008 (2008)

    Article  ADS  Google Scholar 

  22. N. Del-Valle, A. Sanchez, C. Navau, D.X. Chen, Theoretical hints for optimization force and stability in actual maglev devices. IEEE Trans. Appl. Supercond. 19, 2070 (2009)

    Article  ADS  Google Scholar 

  23. N. Del-Valle, A. Sanchez, C. Navau, D.X. Chen, Towards an optimized magnet-superconductor configuration in actual maglev devices. IEEE Trans. Appl. Supercond. 21, 1469 (2011)

    Article  ADS  Google Scholar 

  24. P.Z. Chang, F.C. Moon, J.R. Hull et al., Levitation force and magnetic stiffness in bulk high-temperature superconductors. J. Appl. Phys. 67(9), 4358–4360 (1990)

    Article  ADS  Google Scholar 

  25. A. Sanchez, C. Navau, Vertical force, magnetic stiffness and damping for levitating type-II superconductors. Phys. C Supercond. 268(1–2), 46–52 (1996)

    Article  ADS  Google Scholar 

  26. F.C. Moon, P.Z. Chang, Superconducting Levitation: Applications to Bearings and Magnetic Transportation (Wiley, New York, 1994)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant 51475389, by the Science and Technology Department of Sichuan Province under Grant 2016JQ0003, by the Fundamental Research Funds for the Central Universities under Grant 2682016ZY05, and by the Self-determined Projects of the State Key Laboratory of Traction Power under Grants 2015TPL_T05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Tong Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, CQ., Ma, GT., Liu, K. et al. Observation of the Field, Current and Force Distributions in an Optimized Superconducting Levitation with Translational Symmetry. J Low Temp Phys 186, 106–120 (2017). https://doi.org/10.1007/s10909-016-1654-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1654-1

Keywords

Navigation