Journal of Low Temperature Physics

, Volume 185, Issue 1–2, pp 174–182 | Cite as

First-Principle Molecular Dynamics of Sliding Diamond Surfaces: Tribochemical Reactions with Water and Load Effects

  • Maria Clelia Righi
  • Giovanna Zilibotti
  • Stefano Corni
  • Mauro Ferrario
  • Carlo Maria BertoniEmail author


Ab initio molecular dynamics offers an unexpected tool to understand many aspects of complex and macroscopic phenomena, like friction, lubrication, and surface passivation through chemical reactions induced by load and confinement, as found in recent works (Zilibotti et al., in Phys. Rev. Lett. 111:146101, 2013; De Barros Bouchet et al., J Phys Chem C 116:6966, 2012). Here we review the results of first-principle molecular dynamics simulations of diamond interfaces interacting with water molecules, at different concentrations. We found that the molecular confinement induced by the applied load promotes water dissociation. The consequent surface passivation prevents the formation of carbon bonds across the interface, reducing adhesion and friction. The possibility to extend the use of an atomistic approach to understand the kinetics of tribochemical reactions and their effects on friction will also be discussed.


Ab initio molecular dynamics Friction Sliding diamond surfaces Tribochemistry Water adsorption 



This contribution is part of a tribute workshop in honor of Prof. Flavio Toigo, on Novel Developments in Classical and Quantum Systems, Padua, 4–5 June 2015. The authors are glad to celebrate the role of Prof. Toigo in the fields of surface physics, atom-surface interactions, and molecular dynamics and remember a long-standing collaboration with him and his research group in classical and quantum simulations.

This work has been possible through the support in terms of high-performance computing resource given in the last years by CINECA, the DEISA Consortium, EU FP7 project, and ISCRA project.


  1. 1.
    G. Zilibotti, S. Corni, M.C. Righi, Phys. Rev. Lett. 111, 146101 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    M.I. De Barros Bouchet, G. Zilibotti, C. Matta, M.C. Righi, L. Vandenbulcke, B. Vacher, J.M. Martin. J Phys. Chem. C 116, 6966 (2012)Google Scholar
  3. 3.
    A. Erdemir, Tribol. Int. 38, 249 (2005)CrossRefGoogle Scholar
  4. 4.
    A. Erdemir, C. Donnet, J. Phys. D: Appl. Phys. 39, R311 (2006)CrossRefGoogle Scholar
  5. 5.
    S.M. Hsu, J. Zhang, Z. Yin, Tribol. Lett. 13, 131 (2002)CrossRefGoogle Scholar
  6. 6.
    S.L. James, C.J. Adams, C. Bolm, D. Braga, P. Collier, T. Friscic, F. Grepioni, K.D.M. Harris, G. Hyett, W. Jones, A. Krebs, J. Mack, L. Maini, A.G. Orpen, I.P. Parkin, W.C. Shearouse, J.W. Steed, D.C. Waddell, Chem. Soc. Rev. 41, 413 (2012)CrossRefGoogle Scholar
  7. 7.
    T. Friscic, I. Halasz, P.J. Beldon, A.M. Belenguer, F. Adams, S.A.J. Kimber, V. Honkimaki, R.E. Dinnebier, Nat. Chem. 5, 66 (2013)CrossRefGoogle Scholar
  8. 8.
    J.R. Felts, A.J. Oyer, S.C. Hernández, K.E. Whitener Jr., J.T. Robinson, S.G. Walton, P.E. Sheehan, Nat. Commun. 6, 6467 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    N.N. Gosvami, J.A. Bares, F. Mangolini, A.R. Konicek, D.G. Yablon, R.W. Carpick, Science 348, 102 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    M. Sharma, D. Donadio, E. Schwegler, G. Galli, Nano Lett. 8, 2959 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    R. Hauert, Tribol. Int. 37, 991 (2004)CrossRefGoogle Scholar
  12. 12.
    A. Sumant, D. Grierson, J. Gerbi, J. Birrell, U. Lanke, O. Auciello, J. Carlisle, R. Carpick, Adv. Mater. 17, 1039 (2005)CrossRefGoogle Scholar
  13. 13.
    O. Williams, A. Kriele, J. Hees, M. Wolfer, W.M. Sebert, C. Nebel, Chem. Phys. Lett. 495, 84 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    A.V. Sumant, O. Auciello, R.W. Carpick, S. Srinivasan, J.E. Butler, MRS Bull. 35, 281 (2010)CrossRefGoogle Scholar
  15. 15.
    S.C. Tung, H. Gao, Wear 255, 1276 (2003)CrossRefGoogle Scholar
  16. 16.
    M.N. Gardos, S.A. Gabelich, Tribol. Lett. 6, 103 (1999)CrossRefGoogle Scholar
  17. 17.
    S. Grillo, J. Field, Wear 254, 945 (2003)CrossRefGoogle Scholar
  18. 18.
    H. Kim, J. Lince, O. Eryilmaz, A. Erdemir, Tribol. Lett. 21, 51 (2006)CrossRefGoogle Scholar
  19. 19.
    C. Matta, M.I. De Barros Bouchet, T. Le-Mogne, B. Vachet, J.M. Martin, T. Sagawa. Lubr. Sci. 20, 137 (2008)Google Scholar
  20. 20.
    A.R. Konicek, D.S. Grierson, P.U.P.A. Gilbert, W.G. Sawyer, A.V. Sumant, R.W. Carpick, Phys. Rev. Lett. 100, 235502 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    N. Kumar, N. Sharma, S. Dash, C. Popov, W. Kulisch, J. Reithmaier, G. Favaro, A. Tyagi, B. Raj, Tribol. Int. 44, 2042 (2011)CrossRefGoogle Scholar
  22. 22.
    A.R. Konicek, D.S. Grierson, A.V. Sumant, T.A. Friedmann, J.P. Sullivan, P.U.P.A. Gilbert, W.G. Sawyer, R.W. Carpick, Phys. Rev. B 85, 155448 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    G. Zilibotti, M.C. Righi, M. Ferrario, Phys. Rev. B 79, 1 (2009)CrossRefGoogle Scholar
  24. 24.
    G. Zilibotti, M.C. Righi, Langmuir 27, 6862 (2011)CrossRefGoogle Scholar
  25. 25.
    J. Harrison, D. Brenner, C. White, R. Colton, Thin Solid Films 206, 213 (1991)ADSCrossRefGoogle Scholar
  26. 26.
    G.T. Gao, P.T. Mikulski, J.A. Harrison, J. Am. Chem. Soc. 124, 7202 (2002)CrossRefGoogle Scholar
  27. 27.
    Y. Mo, M.H. Müser, I. Szlufarska, Phys. Rev. B 80, 155438 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    K. Hayashi, K. Tezuka, N. Ozawa, T. Shimazaki, K. Adachi, M. Kubo, J. Phys. Chem. C 115, 22981 (2011)CrossRefGoogle Scholar
  29. 29.
    R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)ADSCrossRefGoogle Scholar
  30. 30.
    O. Manelli, S. Corni, M.C. Righi, J. Phys. Chem. C 114, 7045 (2010)CrossRefGoogle Scholar
  31. 31.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys.: Condens. Matter 21, 395502 (2009)Google Scholar
  33. 33.
    S. Nosé, Progr. Theoret. Phys. Suppl. 103, 1 (1991)ADSCrossRefGoogle Scholar
  34. 34.
    G. Zilibotti, M. Ferrario, C.M. Bertoni, M.C. Righi, Comput. Phys. Commun. 182, 1796 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    R. van den Oetelaar, C. Flipse, Surf. Sci. 384, L828 (1997)CrossRefGoogle Scholar
  36. 36.
    A.V. Sumant, D.S. Grierson, J.E. Gerbi, J.A. Carlisle, O. Auciello, R.W. Carpick, Phys. Rev. B 76, 235429 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    G.T. Gao, P.T. Mikulski, G.M. Chateauneuf, J.A. Harrison, J. Phys. Chem. B 107, 11082 (2003)CrossRefGoogle Scholar
  38. 38.
    S. Dag, S. Ciraci, Phys. Rev. B 70, 241401 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Maria Clelia Righi
    • 1
    • 2
  • Giovanna Zilibotti
    • 2
  • Stefano Corni
    • 1
  • Mauro Ferrario
    • 2
  • Carlo Maria Bertoni
    • 2
    Email author
  1. 1.CNR-NANO Istituto di NanoscienceConsiglio Nazionale delle RicercheModenaItaly
  2. 2.Dipartimento di Scienze Fisiche, Informatiche e MatematicheUniversità di Modena e Reggio EmiliaModenaItaly

Personalised recommendations