Skip to main content
Log in

First-Principle Molecular Dynamics of Sliding Diamond Surfaces: Tribochemical Reactions with Water and Load Effects

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Ab initio molecular dynamics offers an unexpected tool to understand many aspects of complex and macroscopic phenomena, like friction, lubrication, and surface passivation through chemical reactions induced by load and confinement, as found in recent works (Zilibotti et al., in Phys. Rev. Lett. 111:146101, 2013; De Barros Bouchet et al., J Phys Chem C 116:6966, 2012). Here we review the results of first-principle molecular dynamics simulations of diamond interfaces interacting with water molecules, at different concentrations. We found that the molecular confinement induced by the applied load promotes water dissociation. The consequent surface passivation prevents the formation of carbon bonds across the interface, reducing adhesion and friction. The possibility to extend the use of an atomistic approach to understand the kinetics of tribochemical reactions and their effects on friction will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. G. Zilibotti, S. Corni, M.C. Righi, Phys. Rev. Lett. 111, 146101 (2013)

    Article  ADS  Google Scholar 

  2. M.I. De Barros Bouchet, G. Zilibotti, C. Matta, M.C. Righi, L. Vandenbulcke, B. Vacher, J.M. Martin. J Phys. Chem. C 116, 6966 (2012)

  3. A. Erdemir, Tribol. Int. 38, 249 (2005)

    Article  Google Scholar 

  4. A. Erdemir, C. Donnet, J. Phys. D: Appl. Phys. 39, R311 (2006)

    Article  Google Scholar 

  5. S.M. Hsu, J. Zhang, Z. Yin, Tribol. Lett. 13, 131 (2002)

    Article  Google Scholar 

  6. S.L. James, C.J. Adams, C. Bolm, D. Braga, P. Collier, T. Friscic, F. Grepioni, K.D.M. Harris, G. Hyett, W. Jones, A. Krebs, J. Mack, L. Maini, A.G. Orpen, I.P. Parkin, W.C. Shearouse, J.W. Steed, D.C. Waddell, Chem. Soc. Rev. 41, 413 (2012)

    Article  Google Scholar 

  7. T. Friscic, I. Halasz, P.J. Beldon, A.M. Belenguer, F. Adams, S.A.J. Kimber, V. Honkimaki, R.E. Dinnebier, Nat. Chem. 5, 66 (2013)

    Article  Google Scholar 

  8. J.R. Felts, A.J. Oyer, S.C. Hernández, K.E. Whitener Jr., J.T. Robinson, S.G. Walton, P.E. Sheehan, Nat. Commun. 6, 6467 (2015)

    Article  ADS  Google Scholar 

  9. N.N. Gosvami, J.A. Bares, F. Mangolini, A.R. Konicek, D.G. Yablon, R.W. Carpick, Science 348, 102 (2015)

    Article  ADS  Google Scholar 

  10. M. Sharma, D. Donadio, E. Schwegler, G. Galli, Nano Lett. 8, 2959 (2008)

    Article  ADS  Google Scholar 

  11. R. Hauert, Tribol. Int. 37, 991 (2004)

    Article  Google Scholar 

  12. A. Sumant, D. Grierson, J. Gerbi, J. Birrell, U. Lanke, O. Auciello, J. Carlisle, R. Carpick, Adv. Mater. 17, 1039 (2005)

    Article  Google Scholar 

  13. O. Williams, A. Kriele, J. Hees, M. Wolfer, W.M. Sebert, C. Nebel, Chem. Phys. Lett. 495, 84 (2010)

    Article  ADS  Google Scholar 

  14. A.V. Sumant, O. Auciello, R.W. Carpick, S. Srinivasan, J.E. Butler, MRS Bull. 35, 281 (2010)

    Article  Google Scholar 

  15. S.C. Tung, H. Gao, Wear 255, 1276 (2003)

    Article  Google Scholar 

  16. M.N. Gardos, S.A. Gabelich, Tribol. Lett. 6, 103 (1999)

    Article  Google Scholar 

  17. S. Grillo, J. Field, Wear 254, 945 (2003)

    Article  Google Scholar 

  18. H. Kim, J. Lince, O. Eryilmaz, A. Erdemir, Tribol. Lett. 21, 51 (2006)

    Article  Google Scholar 

  19. C. Matta, M.I. De Barros Bouchet, T. Le-Mogne, B. Vachet, J.M. Martin, T. Sagawa. Lubr. Sci. 20, 137 (2008)

  20. A.R. Konicek, D.S. Grierson, P.U.P.A. Gilbert, W.G. Sawyer, A.V. Sumant, R.W. Carpick, Phys. Rev. Lett. 100, 235502 (2008)

    Article  ADS  Google Scholar 

  21. N. Kumar, N. Sharma, S. Dash, C. Popov, W. Kulisch, J. Reithmaier, G. Favaro, A. Tyagi, B. Raj, Tribol. Int. 44, 2042 (2011)

    Article  Google Scholar 

  22. A.R. Konicek, D.S. Grierson, A.V. Sumant, T.A. Friedmann, J.P. Sullivan, P.U.P.A. Gilbert, W.G. Sawyer, R.W. Carpick, Phys. Rev. B 85, 155448 (2012)

    Article  ADS  Google Scholar 

  23. G. Zilibotti, M.C. Righi, M. Ferrario, Phys. Rev. B 79, 1 (2009)

    Article  Google Scholar 

  24. G. Zilibotti, M.C. Righi, Langmuir 27, 6862 (2011)

    Article  Google Scholar 

  25. J. Harrison, D. Brenner, C. White, R. Colton, Thin Solid Films 206, 213 (1991)

    Article  ADS  Google Scholar 

  26. G.T. Gao, P.T. Mikulski, J.A. Harrison, J. Am. Chem. Soc. 124, 7202 (2002)

    Article  Google Scholar 

  27. Y. Mo, M.H. Müser, I. Szlufarska, Phys. Rev. B 80, 155438 (2009)

    Article  ADS  Google Scholar 

  28. K. Hayashi, K. Tezuka, N. Ozawa, T. Shimazaki, K. Adachi, M. Kubo, J. Phys. Chem. C 115, 22981 (2011)

    Article  Google Scholar 

  29. R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)

    Article  ADS  Google Scholar 

  30. O. Manelli, S. Corni, M.C. Righi, J. Phys. Chem. C 114, 7045 (2010)

    Article  Google Scholar 

  31. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  32. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys.: Condens. Matter 21, 395502 (2009)

    Google Scholar 

  33. S. Nosé, Progr. Theoret. Phys. Suppl. 103, 1 (1991)

    Article  ADS  Google Scholar 

  34. G. Zilibotti, M. Ferrario, C.M. Bertoni, M.C. Righi, Comput. Phys. Commun. 182, 1796 (2011)

    Article  ADS  Google Scholar 

  35. R. van den Oetelaar, C. Flipse, Surf. Sci. 384, L828 (1997)

    Article  Google Scholar 

  36. A.V. Sumant, D.S. Grierson, J.E. Gerbi, J.A. Carlisle, O. Auciello, R.W. Carpick, Phys. Rev. B 76, 235429 (2007)

    Article  ADS  Google Scholar 

  37. G.T. Gao, P.T. Mikulski, G.M. Chateauneuf, J.A. Harrison, J. Phys. Chem. B 107, 11082 (2003)

    Article  Google Scholar 

  38. S. Dag, S. Ciraci, Phys. Rev. B 70, 241401 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This contribution is part of a tribute workshop in honor of Prof. Flavio Toigo, on Novel Developments in Classical and Quantum Systems, Padua, 4–5 June 2015. The authors are glad to celebrate the role of Prof. Toigo in the fields of surface physics, atom-surface interactions, and molecular dynamics and remember a long-standing collaboration with him and his research group in classical and quantum simulations.

This work has been possible through the support in terms of high-performance computing resource given in the last years by CINECA, the DEISA Consortium, EU FP7 project, and ISCRA project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Maria Bertoni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Righi, M.C., Zilibotti, G., Corni, S. et al. First-Principle Molecular Dynamics of Sliding Diamond Surfaces: Tribochemical Reactions with Water and Load Effects. J Low Temp Phys 185, 174–182 (2016). https://doi.org/10.1007/s10909-016-1620-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1620-y

Keywords

Navigation