Skip to main content
Log in

Approximating the 3D Character of a Van Der Waals Atom–Solid Potential

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A truncated Fourier decomposition of the atom–substrate potential energy is developed for three-dimensional models of van der Waals systems, specifically for adsorption on the basal plane surface of graphite or the (111) face of a face-centered-cubic lattice. This provides a framework for analysis of a priori calculations of physical adsorption energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The Ar/graphite example [17] discussed in Sect. III. A has \(V_{g_0}\,=\,-0.222\) and \(V_{\sqrt{3} g_0}\,=\,-0.403\) meV. Then, according to Eq. (26), the bridge site remains a saddle point on the potential energy surface. The maxima (1.33 meV) of the 2D surface are at positions that are not high-symmetry points of the unit cell: \({ r} \simeq 0.391 { a}_1, 0.609 { a}_1, 0.391 { a}_2, 0.609 { a}_2,\ldots \).

References

  1. L.W. Bruch, M.W. Cole, E. Zaremba, Physical Adsorption: Forces and Phenomena (Oxford University Press, Oxford, 1997)

    Google Scholar 

  2. M.C. Righi, M. Ferrario, J. Phys.: Condens. Matter 19, 305008 (2007)

    Google Scholar 

  3. A.D. Novaco, L.W. Bruch, J. Bavaresco, Phys. Rev. B 91, 161412(R) (2015)

    Article  ADS  Google Scholar 

  4. R.D. Diehl, H.I. Li, L.W. Bruch, J. Phys.: Condens. Matter 28, 035002 (2016)

    ADS  Google Scholar 

  5. J.F. Annett, R. Haydock, Phys. Rev. Lett. 53, 838 (1984)

    Article  ADS  Google Scholar 

  6. N. Jean, M.I. Trioni, G.P. Brivio, V. Bortolani, Phys. Rev. Lett. 92, 013201 (2004)

    Article  ADS  Google Scholar 

  7. J.A. Barker, C.T. Rettner, J. Chem. Phys. 97, 5844 (1992); Erratum in: J. Chem. Phys. 101, 9202 (1994)

  8. A.E. Betancourt, D.M. Bird, J. Phys.: Condens. Matter 12, 7077 (D. M, Bird (private communication), 2000)

  9. W.A. Steele, Surf. Sci. 36, 317 (1973)

    Article  ADS  Google Scholar 

  10. L.W. Bruch, R.D. Diehl, J.A. Venables, Rev. Mod. Phys. 79, 1381 (2007)

    Article  ADS  Google Scholar 

  11. R.D. Diehl, T. Seyller, M. Caragiu, G.S. Leatherman, N. Ferralis, K. Pussi, P. Kaukasoina, M. Lindroos, J. Phys.: Condens. Matter 16, S2839 (2004)

    ADS  Google Scholar 

  12. J.L.F. Da Silva, C. Stampfl, Phys. Rev. B 76, 085301 (2007)

    Article  ADS  Google Scholar 

  13. L. Sheng, Y. Ono, T. Taketsugu, J. Phys. Chem. C 114, 3544 (2010)

    Article  Google Scholar 

  14. A. Ambrosetti, P.L. Silvestrelli, J. Phys. Chem. C 115, 3695 (2011)

    Article  Google Scholar 

  15. Y.N. Zhang, V. Bortolani, G. Mistura, J. Phys.: Condens. Matter 26, 445003 (2014)

    ADS  Google Scholar 

  16. A. Tkatchenko, O.A. von Lillienfeld, Phys. Rev. B 73, 153406 (2006)

    Article  ADS  Google Scholar 

  17. P.L. Silvestrelli, K. Benyahia, S. Grubisić, F. Ancilotto, F. Toigo, J. Chem. Phys. 130, 074702 (2009)

    Article  ADS  Google Scholar 

  18. J.E. Müller, Phys. Rev. Lett. 65, 3021 (1990)

    Article  ADS  Google Scholar 

  19. Y.N. Zhang, V. Bortolani, G. Mistura, Phys. Rev. B 89, 165414 (2014)

    Article  ADS  Google Scholar 

  20. J.L.F. Da Silva, C. Stampfl, M. Scheffler, Phys. Rev. B 72, 075424 (2005)

    Article  ADS  Google Scholar 

  21. J.L.F. Da Silva, C. Stampfl, Phys. Rev. B 77, 045401 (2008)

    Article  ADS  Google Scholar 

  22. D.-L. Chen, W.A. Al-Saidi, J.K. Johnson, Phys. Rev. B 84, 241405(R) (2011)

    Article  ADS  Google Scholar 

  23. D.-L. Chen, W.A. Al-Saidi, J.K. Johnson, J. Phys.: Condens. Matter 24, 424211 (2012)

    ADS  Google Scholar 

  24. P. Lazić, R. Brako, B. Gumhalter, J. Phys.: Condens. Matter 19, 305004 (2007)

    Google Scholar 

  25. P.L. Silvestrelli, A. Ambrosetti, An exception is the DFT/vdW-WF2s1 calculation for Xe/Ag(111) reported. J. Low Temp. Phys. 1–15 (2016)

  26. P.L. Silvestrelli, A. Ambrosetti, S. Grubisić, F. Ancilotto, Phys. Rev. B 85, 165405 (2012)

    Article  ADS  Google Scholar 

  27. Y.N. Zhang, F. Hanke, V. Bortolani, M. Persson, R.Q. Wu, Phys. Rev. Lett. 106, 236103 (2011)

    Article  ADS  Google Scholar 

  28. G. Fois, L. Bruschi, L. d’Apolito, G. Mistura, B. Torre, F.B. de Mongeot, C. Boragno, R. Buzio, U. Valbusa, J. Phys.: Condens. Matter 19, 305013 (2007)

    Google Scholar 

  29. J. Krim, Adv. Phys. 61, 155 (2012). Sec. 4.5.4

  30. V.G. Ruiz, W. Liu, A. Tkatchenko, Phys. Rev. B 93, 035118 (2016)

    Article  ADS  Google Scholar 

  31. D.M. Eigler, E.K. Schweitzer, Nature 344, 524 (1990)

    Article  ADS  Google Scholar 

  32. D. M. Eigler. http://www.almaden.ibm.com/vis/stm/hexagone.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. W. Bruch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruch, L.W. Approximating the 3D Character of a Van Der Waals Atom–Solid Potential. J Low Temp Phys 185, 122–128 (2016). https://doi.org/10.1007/s10909-016-1613-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1613-x

Keywords

Navigation