Skip to main content
Log in

Dynamical Spin Properties of Confined Fermi and Bose Systems in the Presence of Spin–Orbit Coupling

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Due to the recent experimental progress, tunable spin–orbit (SO) interactions represent ideal candidates for the control of polarization and dynamical spin properties in both quantum wells and cold atomic systems. A detailed understanding of spin properties in SO-coupled systems is thus a compelling prerequisite for possible novel applications or improvements in the context of spintronics and quantum computers. Here, we analyze the case of equal Rashba and Dresselhaus couplings in both homogeneous and laterally confined two-dimensional systems. Starting from the single-particle picture and subsequently introducing two-body interactions we observe that periodic spin fluctuations can be induced and maintained in the system. Through an analytical derivation, we show that the two-body interaction does not involve decoherence effects in the bosonic dimer, and, in the repulsive homogeneous Fermi gas, it may be even exploited in combination with the SO coupling to induce and tune standing currents. By further studying the effects of a harmonic lateral confinement—a particularly interesting case for Bose condensates—we evidence the possible appearance of nontrivial spin textures, whereas the further application of a small Zeeman-type interaction can be exploited to fine-tune the system’s polarizability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. G.J. Conduit, Phys. Rev. A 82, 043604 (2010)

    Article  ADS  Google Scholar 

  2. G.J. Conduit, B.D. Simons, Phys. Rev. A 79, 053606 (2009)

    Article  ADS  Google Scholar 

  3. G.J. Conduit, A.G. Green, B.D. Simons, Phys. Rev. Lett. 103, 207201 (2009)

    Article  ADS  Google Scholar 

  4. R.A. Duine, A.H. MacDonald, Phys. Rev. Lett 95, 230403 (2005)

    Article  ADS  Google Scholar 

  5. S.-Y. Chang, M. Randeria, N. Trivedi, Proc. Natl. Acad. Sci. 108, 51 (2010)

    Article  ADS  Google Scholar 

  6. A. Ambrosetti, F. Pederiva, E. Lipparini, S. Gandolfi, Phys. Rev. B 80, 125306 (2009)

    Article  ADS  Google Scholar 

  7. A. Ambrosetti, J.M. Escartin, E. Lipparini, F. Pederiva, Eur. Phys. Lett. 94, 27004 (2011)

    Article  ADS  Google Scholar 

  8. M. Valin-Rodriguez, A. Puente, L. Serra, E. Lipparini, Phys. Rev. B 66, 235322 (2002)

    Article  ADS  Google Scholar 

  9. J.I. Climente, A. Bertoni, G. Goldoni, M. Rontani, E. Molinari, Phys. Rev. B 75, 081303 (2007)

    Article  ADS  Google Scholar 

  10. A. Emperador, E. Lipparini, F. Pederiva, Phys. Rev. B 70, 125302 (2004)

    Article  ADS  Google Scholar 

  11. F. Mei et al., Nat. Sci. Rep. 4, 4030 (2014)

    ADS  Google Scholar 

  12. E.I. Rashba, J. Supercond. 18, 137 (2006)

    Article  ADS  Google Scholar 

  13. E.I. Rashba, Phys. Rev. B 70, 201309 (2004)

    Article  ADS  Google Scholar 

  14. G. Dresselhaus, Phys. Rev. 100, 580 (1955)

    Article  ADS  Google Scholar 

  15. J. Nitta, T. Akazaki, H. Takayanagi, T. Enoki, Phys. Rev. Lett. 78, 1335 (1997)

    Article  ADS  Google Scholar 

  16. G. Engels, J. Lange, T. Schäpers, H. Lüth, Phys. Rev. B 55, R1958 (1997)

    Article  ADS  Google Scholar 

  17. M. Kohda, T. Nihei, J. Nitta, Physica E 40, 1194–1196 (2008)

    Article  ADS  Google Scholar 

  18. G. Juzeliunas, J. Ruseckas, J. Dalibard, Phys. Rev. A 81, 053403 (2010)

    Article  ADS  Google Scholar 

  19. J. Dalibard, F. Jerbier, G. Juzeliunas, P. Öhberg, arXiv:1008.5378 (2010)

  20. Y.-J. Lin, K. Jimenez-Garcia, I.B. Spielman, Nat. Lett. 471, 83 (2011)

    Article  ADS  Google Scholar 

  21. J.-Y. Zhang, S.-C. Ji, Z. Chen, L. Zhang, Z.-D. Du, B. Yan, G.-S. Pan, B. Zhao, Y.-J. Deng, H. Zhai, S. Chen, J.-W. Pan, Phys. Rev. Lett. 109, 115301 (2012)

    Article  ADS  Google Scholar 

  22. P. Wang, Z.-Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai, J. Zhang, Phys. Rev. Lett. 109, 095301 (2012)

    Article  ADS  Google Scholar 

  23. H. Feshbach, Ann. Phys. 5, 357 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  24. Y. Li, L.P. Pitaevskii, S. Stringari, Phys. Rev. Lett. 108, 225301 (2012)

    Article  ADS  Google Scholar 

  25. G.I. Martone, Y. Li, L.P. Pitaevskii, S. Stringari, Phys. Rev. A 86, 063621 (2012)

    Article  ADS  Google Scholar 

  26. M. Burrello, A. Trombettoni, Phys. Rev. A 84, 043625 (2011)

    Article  ADS  Google Scholar 

  27. M. Merkl, A. Jacob, F.E. Zimmer, P. Ohberg, L. Santos, Phys. Rev. Lett. 104, 073603 (2010)

    Article  ADS  Google Scholar 

  28. O. Fialko, J. Brand, U. Zulicke, Phys. Rev. A 85, 051605 (2012)

    Article  ADS  Google Scholar 

  29. R. Liao, Z.G. Huang, ibid 87, 043605 (2013)

    ADS  Google Scholar 

  30. Y. Xu, Y. Zhang, B. Wu, Phys. Rev. A 87, 013614 (2013)

    Article  ADS  Google Scholar 

  31. L. Salasnich, B.A. Malomed, Phys. Rev. A 87, 063625 (2013)

    Article  ADS  Google Scholar 

  32. X.-Q. Xu, J.H. Han, Phys. Rev. Lett. 107, 200401 (2011)

    Article  ADS  Google Scholar 

  33. S. Sinha, R. Nath, L. Santos, Phys. Rev. Lett. 107, 270401 (2011)

    Article  Google Scholar 

  34. C.-F. Liu, W.M. Liu, Phys. Rev. A 86, 033602 (2012)

    Article  ADS  Google Scholar 

  35. E. Ruokokoski, J.A.M. Huhtamaki, M. Mottonen, Phys. Rev. A 86, 051607 (2012)

    Article  ADS  Google Scholar 

  36. H. Sakaguchi, B. Li, Phys. Rev. A 87, 015602 (2013)

    Article  ADS  Google Scholar 

  37. Y. Deng, J. Cheng, H. Jing, C.P. Sun, S. Yi, Phys. Rev. Lett. 108, 125301 (2012)

    Article  ADS  Google Scholar 

  38. J.P. Vyasanakere, V.B. Shenoy, Phys. Rev. B 83, 094515 (2011)

    Article  ADS  Google Scholar 

  39. J.P. Vyasanakere, S. Zhang, V.B. Shenoy, Phys. Rev. B 84, 014512 (2011)

    Article  ADS  Google Scholar 

  40. M. Gong, S. Tewari, C. Zhang, Phys. Rev. Lett. 107, 195303 (2011)

    Article  ADS  Google Scholar 

  41. H. Hu, L. Jiang, X.-J. Liu, H. Pu, Phys. Rev. Lett. 107, 195304 (2011)

    Article  ADS  Google Scholar 

  42. Z.-Q. Yu, H. Zhai, Phys. Rev. Lett. 107, 195305 (2011)

    Article  ADS  Google Scholar 

  43. M. Iskin, A.L. Subasi, Phys. Rev. Lett. 107, 050402 (2011)

    Article  ADS  Google Scholar 

  44. W. Yi, G.-C. Guo, Phys. Rev. A 84, 031608 (2011)

    Article  ADS  Google Scholar 

  45. L. DellAnna, G. Mazzarella, L. Salasnich, Phys. Rev. A 84, 033633 (2011)

    Article  ADS  Google Scholar 

  46. M. Iskin, A.L. Subasi, Phys. Rev. A 84, 043621 (2011)

    Article  ADS  Google Scholar 

  47. J. Zhou, W. Zhang, W. Yi, Phys. Rev. A 84, 063603 (2011)

    Article  ADS  Google Scholar 

  48. L. Jiang, X.-J. Liu, H. Hu, H. Pu, Phys. Rev. A 84, 063618 (2011)

    Article  ADS  Google Scholar 

  49. L. Han, C.A.R.S. de Melo, Phys. Rev. A 85, 011606(R) (2012)

    Article  ADS  Google Scholar 

  50. G. Chen, M. Gong, C. Zhang, Phys. Rev. A 85, 013601 (2012)

    Article  ADS  Google Scholar 

  51. K. Zhou, Z. Zhang, Phys. Rev. Lett. 108, 025301 (2012)

    Article  ADS  Google Scholar 

  52. X. Yang, S. Wan, Phys. Rev. A 85, 023633 (2012)

    Article  ADS  Google Scholar 

  53. M. Iskin, Phys. Rev. A 85, 013622 (2012)

    Article  ADS  Google Scholar 

  54. K. Seo, L. Han, C.A.R. Sa de Melo, Phys. Rev. A 85, 033601 (2012)

    Article  ADS  Google Scholar 

  55. L. He, Xu-Guang Huang, Phys. Rev. Lett. 108, 145302 (2012)

    Article  ADS  Google Scholar 

  56. X.J. Liu, M.F. Borunda, X. Liu, J. Sinova, Phys. Rev. Lett. 102, 046402 (2009)

    Article  ADS  Google Scholar 

  57. L.W. Cheuk et al., Phys. Rev. Lett. 109, 095302 (2012)

    Article  ADS  Google Scholar 

  58. J.P.A. Devreese, J. Tempere, C.A.R. Sá de Melo, Phys. Rev. A 92, 043618 (2015)

    Article  ADS  Google Scholar 

  59. A. Ambrosetti, P.L. Silvestrelli, F. Toigo, L. Mitas, F. Pederiva, Phys. Rev. B 85, 045115 (2012)

    Article  ADS  Google Scholar 

  60. A. Ambrosetti, G. Lombardi, L. Salasnich, P.L. Silvestrelli, F. Toigo, Phys. Rev. A 90, 043614 (2014)

    Article  ADS  Google Scholar 

  61. A. Ambrosetti, P.L. Silvestrelli, F. Pederiva, L. Mitas, F. Toigo, Phys. Rev. A 91, 053622 (2015)

    Article  ADS  Google Scholar 

  62. C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010)

    Article  ADS  Google Scholar 

  63. S. Reimann, M. Manninen, Rev. Mod. Phys. 74, 1283 (2002)

    Article  ADS  Google Scholar 

  64. M. Koskinen, M. Manninen, S.M. Reimann, Phys. Rev. Lett. 79, 1389 (1997)

    Article  ADS  Google Scholar 

  65. M. Eto, Jpn. Appl. Phys. Part 1 36, 3924 (1997)

    Article  Google Scholar 

  66. P.A. Maksym, T. Chakraborty, Phys. Rev. Lett. 65, 108 (1990)

    Article  ADS  Google Scholar 

  67. L.P. Kouwenhoven, T.H. Oosterkamp, M.W.S. Danoesastro, M. Eto, D.G. Austing, T. Honda, S. Tarucha, Science 278, 1788 (1997)

    Article  ADS  Google Scholar 

  68. D.R. Steward, D. Sprinzak, C.M. Marcus, C.I. Duruöz, J.S. Harris Jr., Science 278, 1784 (1997)

    Article  ADS  Google Scholar 

  69. A. Ambrosetti, F. Pederiva, E. Lipparini, Phys. Rev. B 83, 155301 (2011)

    Article  ADS  Google Scholar 

  70. M. Governale, Phys. Rev. Lett. 89, 206802 (2002)

    Article  ADS  Google Scholar 

  71. A. Cavalli, F. Malet, J.C. Cremon, S.M. Reimann, Phys. Rev. B 84, 235117 (2011)

    Article  ADS  Google Scholar 

  72. E. Lipparini, M. Barranco, F. Malet, M. Pi, Phys. Rev. B 79, 115310 (2009)

    Article  ADS  Google Scholar 

  73. E. Lipparini, Modern Many-Particle Physics: Atomic Gases, Quantum Dots and Quantum Liquids, 2nd edn. (World Scientific, Singapore, 2008)

    Book  Google Scholar 

  74. V. Penna, A.F. Raffa, J. Phys. B 47, 075501 (2014)

    Article  ADS  Google Scholar 

  75. V. Galitski, I.B. Spielman, Nature 494, 49 (2013)

    Article  ADS  Google Scholar 

  76. X. Luo et al., Nat. Sci. Rep. 6, 18983 (2016)

    Article  ADS  Google Scholar 

  77. T. Yefsah, R. Desbuquois, L. Chomaz, K.J. Günter, J. Dalibard, Phys. Rev. Lett. 107, 130401 (2011)

    Article  ADS  Google Scholar 

  78. X. Guan, M.T. Batchelor, C. Lee, Rev. Mod. Phys 85, 1633 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the scientific collaboration with Flavio Toigo, who actively contributed to the present article. They also thank F. Pederiva and E. Lipparini for their useful discussion and fruitful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ambrosetti.

Appendix: Alternative Approach to Harmonically Confined 2D Particles

Appendix: Alternative Approach to Harmonically Confined 2D Particles

Due to the dependence of \(\hat{L}'_z\) on \(\hat{\mathbf {p}}'\) (which satisfies \([\hat{p}'_x,x]=-i\) and analogously for the y components), this operator commutes with the Hamiltonian (46), so that a common basis set can be defined which contemporarily diagonalizes \(\hat{L}'_z\) and \(\hat{h}_\mathrm{{sp}}\). Using polar coordinates (\(x=r\cos \varphi \) and \(y=r\sin \varphi \)), the ground-state solutions given in the previous section read as

$$\begin{aligned} \psi _0^+(r,\varphi ) =\left( \frac{m\omega }{4\pi }\right) ^{1/4} e^{-iK r(\cos \varphi +\sin \varphi )} e^{-\frac{m\omega }{2}r^2} \left( \begin{array}{c} \frac{1+i}{\sqrt{2}} \\ 1 \\ \end{array} \right) \nonumber \\ \psi _0^-(r,\varphi ) =\left( \frac{m\omega }{4\pi }\right) ^{1/4} e^{iK r(\cos \varphi +\sin \varphi )} e^{-\frac{m\omega }{2}r^2} \left( \begin{array}{c} -\frac{1+i}{\sqrt{2}} \\ 1 \\ \end{array} \right) \end{aligned}$$
(67)

It is easily shown that these are at the same time eigenstates of \(\hat{h}_\mathrm{{sp}}\) with energy \(\omega -2m\alpha ^2\), and of \(\tilde{L}_z\) with eigenvalue 0. Other eigenstates of \(\tilde{L}_z\) relative to the eigenvalue l can be obtained by defining the following creation and destruction operators:

$$\begin{aligned} \hat{a}_{\pm }^{'\dagger }=\frac{1}{\sqrt{2}}(\hat{a}_x^{'\dagger }\pm i\hat{a}_y^{'\dagger }) \nonumber \\ \hat{a}'_{\pm }=\frac{1}{\sqrt{2}}(\hat{a}'_x \mp i\hat{a}'_y). \end{aligned}$$
(68)

These operators satisfy the usual commutation properties, in analogy with \(\hat{a}^{'\dagger }\), \(\hat{a}'\).

Moreover, from the application of \(\hat{a}_{\pm }^{'\dagger }\), it becomes evident how \(\hat{L}'_z\) and \(\hat{L}_z\) eigenstates only differ by the phase factor \(\pm Kr(\cos \varphi +\sin \varphi )\), induced by the SO coupling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrosetti, A., Salasnich, L. & Silvestrelli, P.L. Dynamical Spin Properties of Confined Fermi and Bose Systems in the Presence of Spin–Orbit Coupling. J Low Temp Phys 185, 3–25 (2016). https://doi.org/10.1007/s10909-016-1610-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1610-0

Keywords

Navigation