Skip to main content
Log in

Metal–Insulator Transition in the Hubbard Model: Correlations and Spiral Magnetic Structures

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The metal–insulator transition (MIT) for the square, simple cubic, and body-centered cubic lattices is investigated within the t\(t^\prime \) Hubbard model at half-filling by using both the generalized for the case of spiral order Hartree–Fock approximation (HFA) and Kotliar–Ruckenstein slave-boson approach. It turns out that the magnetic scenario of MIT becomes superior over the non-magnetic one. The electron correlations lead to some suppression of the spiral phases in comparison with HFA. We found the presence of a metallic antiferromagnetic (spiral) phase in the case of three-dimensional lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. N.F. Mott, Metal-Insulator Transitions (Taylor and Francis, London, 1990)

    Google Scholar 

  2. M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)

    Article  ADS  Google Scholar 

  3. J. Hubbard, Proc. R. Soc. A 281, 401 (1964)

    Article  ADS  Google Scholar 

  4. R.O. Zaitsev, Sov. Phys. JETP 48, 1193 (1975)

    ADS  Google Scholar 

  5. A.O. Anokhin, V.Yu. Irkhin, M.I. Katsnelson, J. Phys. Condens. Matter 3, 1475 (1991)

  6. V.Yu. Irkhin, A.V. Zarubin, Eur. Phys. J. B. 38, 563 (2004)

  7. M.J. Rozenberg, G. Kotliar, X.Y. Zhang, Phys. Rev. B. 49, 10181 (1994)

    Article  ADS  Google Scholar 

  8. S. Onoda, M. Imada, Phys. Rev. B. 67, 161102 (2003)

    Article  ADS  Google Scholar 

  9. M.I. Katsnelson, V.Yu. Irkhin, J. Phys. C. 17, 4291 (1984)

  10. R. Chitra, G. Kotliar, Phys. Rev. Lett. 83, 2386 (1999)

    Article  ADS  Google Scholar 

  11. R. Peters, T. Pruschke, New J. Phys. 11, 083022 (2009)

    Article  ADS  Google Scholar 

  12. P.A. Igoshev, M.A. Timirgazin, A.A. Katanin et al., Phys. Rev. B. 81, 094407 (2010)

    Article  ADS  Google Scholar 

  13. P.A. Igoshev, M.A. Timirgazin et al., JETP Lett. 98, 172 (2013)

    Article  Google Scholar 

  14. M.A. Timirgazin, A.K. Arzhnikov, V.Yu. Irkhin, JETP Lett. 86, 171 (2012)

  15. P.A. Igoshev, M.A. Timirgazin et al., J. Magn. Magn. Mater. 383, 2 (2015)

    Article  ADS  Google Scholar 

  16. P.A. Igoshev, M.A. Timirgazin et al., J. Phys. Condens. Matter 233, 68 (2015)

    Google Scholar 

  17. G. Kotliar, A.E. Ruckenstein, Phys. Rev. Lett. 57, 1362 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  18. R. Fresard, P. Wölfle, J. Phys. Condens. Matter 4, 3625 (1992)

    Article  ADS  Google Scholar 

  19. T. Li, Y.S. Sun, P. Wölfle, Z. Phys. B. 82, 369 (1991)

    Article  ADS  Google Scholar 

  20. H. Kondo, T. Moriya, J. Phys. Soc. Jpn. 65, 2559 (1996)

    Article  ADS  Google Scholar 

  21. D. Duffy, A. Moreo, Phys. Rev. B. 55, R676 (1997)

    Article  ADS  Google Scholar 

  22. Z.-Q. Yu, L. Yin, Phys. Rev. B. 81, 195122 (2010)

    Article  ADS  Google Scholar 

  23. I. Yang, E. Lange, G. Kotliar, Phys. Rev. B. 61, 2521 (2000)

    Article  ADS  Google Scholar 

  24. T. Kashima, M. Imada, J. Phys. Soc. Jpn. 70, 3052 (2001)

    Article  ADS  Google Scholar 

  25. T. Mizusaki, M. Imada, Phys. Rev. B. 74, 014421 (2006)

    Article  ADS  Google Scholar 

  26. A. Yamada, K. Seki, R. Eder, Y. Ohta, Phys. Rev. B. 88, 075114 (2013)

    Article  ADS  Google Scholar 

  27. W.F. Brinkman, T.M. Rice, Phys. Rev. B. 2, 4302 (1970)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The research was carried out within the state assignment of FASO of Russia (theme “Quantum” No. 01201463332). This work was supported in part by the Division of Physical Sciences and Ural Branch, Russian Academy of Sciences (Project Nos. 15-8-2-9, 15-8-2-12), and by the Russian Foundation for Basic Research (Project No. 16-02-00995) and Act 211 Government of the Russian Federation 02.A03.21.0006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marat A. Timirgazin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timirgazin, M.A., Igoshev, P.A., Arzhnikov, A.K. et al. Metal–Insulator Transition in the Hubbard Model: Correlations and Spiral Magnetic Structures. J Low Temp Phys 185, 651–656 (2016). https://doi.org/10.1007/s10909-016-1603-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1603-z

Keywords

Navigation