Skip to main content
Log in

Finite Size Effect on the Specific Heat of a Bose Gas in Multi-filament Cables

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The specific heat for an ideal Bose gas confined in semi-infinite multi-filament cables is analyzed. We start with a Bose gas inside a semi-infinite tube of impenetrable walls and finite rectangular cross section. The internal filament structure is created by applying to the gas two, mutually perpendicular, finite Kronig–Penney delta potentials along the tube cross section, while particles are free to move perpendicular to the cross section. The energy spectrum accessible to the particles is obtained and introduced into the grand potential to calculate the specific heat of the system as a function of temperature for different values of the periodic structure parameters such as the cross-section area, the wall impenetrability, and the number of filaments. The specific heat as a function of temperature shows at least two maxima and one minimum. The main difference with respect to the infinite case is that the peak associated with the BE condensation becomes a smoothed maximum, namely there is not a jump in the specific heat derivative, whose temperature no longer represents a critical point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P. Kapitza, Nature 141, 241 (1938)

    Article  Google Scholar 

  2. J.F. Allen, H. Jones, Nature 141, 243 (1938)

    Article  ADS  Google Scholar 

  3. L.M. Steele et al., Phys. Rev. Lett. 71, 3673 (1993)

    Article  ADS  Google Scholar 

  4. J.C. Lasjaunias et al., Phys. Rev. Lett. 91, 025901 (2003)

    Article  ADS  Google Scholar 

  5. L.V. Markić, H.R. Glyde, Phys. Rev. B 92, 064510 (2015)

    Article  ADS  Google Scholar 

  6. F.M. Gasparini et al., Rev. Modern Phys. 80, 1009 (2008)

    Article  ADS  Google Scholar 

  7. J.K. Perron et al., Nat. Phys. 6, 499 (2010)

    Article  Google Scholar 

  8. D.M. Goble, L.E.H. Trainor, Phys. Rev. 157, 167 (1967)

    Article  ADS  Google Scholar 

  9. M.F.M. Osborne, Phys. Rev. 76, 3965 (1949)

    MathSciNet  Google Scholar 

  10. H.R. Pajkowski, R.K. Pathria, J. Phys. A 10, 561 (1977)

    Article  ADS  Google Scholar 

  11. I. Bloch, Nat. Phys. 1, 23 (2005)

    Article  Google Scholar 

  12. R.L. de Kronig, W.G. Penney, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 130, 499 (1930)

    Article  ADS  Google Scholar 

  13. D.J. Griffiths, C.A. Steinke, Am. J. Phys. 69, 137 (2001)

    Article  ADS  Google Scholar 

  14. R.K. Pathria, Statistical Mechanics, 2nd edn. (Pergamon, Oxford, 1996)

    MATH  Google Scholar 

  15. P. Salas, F.J. Sevilla, M.A. Solís, J. Low Temp. Phys. 168, 258 (2012)

    Article  ADS  Google Scholar 

  16. R.K. Pathria, Phys. Rev. A 5, 1451 (1972)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank support from Grants PAPIIT-IN111613 and CONACyT 221030.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Guijarro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guijarro, G., Solís, M.A. Finite Size Effect on the Specific Heat of a Bose Gas in Multi-filament Cables. J Low Temp Phys 183, 152–160 (2016). https://doi.org/10.1007/s10909-015-1446-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-015-1446-z

Keywords

Navigation