Skip to main content

Advertisement

Log in

Superfluid Onset of \(^{4}\)He Nanotube Depending on a One-Dimensional Length

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A 1D Bose fluid has been actually realized for the \(^{4} \)He nanotubes formed in 1D nanochannels, and the superfluidity observed by a torsional oscillator. Dependence of the superfluid density on the channel diameter was qualitatively well explained by a theory that the superfluid onset temperature depends on an effective 1D length \(L_{\mathrm {eff}}\) which is the ratio of the length to the circumference of the fluid nanotube. To examine this mechanism, we measured the superfluid of a new \( ^{4} \)He nanotube formed in the 1D channel with the diameter 3.1 nm and the length 10–20 \(\upmu \)m, which is one order longer than that of the former channels. The observed superfluid is similar to that of the much smaller diameter, typically 2.2 or 1.8 nm, channel with the shorter length. This indicates that the superfluid onset observed for the present \(^{4}\)He nanotubes is determined by the finite effective 1D length \(L_{\mathrm {eff}}\), not by the channel diameter. In addition to this length dependence, dynamics at the 1D superfluid onset is indicated by a dissipation peak at \( 10^{3}\) Hz measurement frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. When the nanopores are filled with N\( _{2} \) at 90 %, the pressure in the gas phase becomes close to the saturated vapor pressure for the large pore diameters. It causes a trouble of capillary block in a experimental procedure. Thus, the measurement by filling N\( _{2} \) in the nanopores was done for the pores below 2.8 nm. And, similar \( \Delta f / S \) of the grain surface film was assumed for the larger pores.

References

  1. I. Rudnick, Phys. Rev. Lett. 40(22), 1454 (1978)

    Article  ADS  Google Scholar 

  2. D.J. Bishop, J.D. Reppy, Phys. Rev. Lett. 40(26), 1727 (1978)

    Article  ADS  Google Scholar 

  3. P.C. Hohenberg, Phys. Rev. 158(2), 383 (1967)

    Article  ADS  Google Scholar 

  4. S. Inagaki, Y. Fukushima, K. Kuroda, J. Chem. Soc. Chem. Commun. (8), 680 (1993)

  5. N. Wada, J. Taniguchi, H. Ikegami, S. Inagaki, Y. Fukushima, Phys. Rev. Lett. 86(19), 4322 (2001)

    Article  ADS  Google Scholar 

  6. H. Ikegami, Y. Yamato, T. Okuno, J. Taniguchi, N. Wada, S. Inagaki, Y. Fukushima, Phys. Rev. B 76(14), 144503 (2007)

    Article  ADS  Google Scholar 

  7. N. Wada, M. Hieda, R. Toda, T. Matsushita, Low Temp. Phys. 39(9), 786 (2013)

    Article  ADS  Google Scholar 

  8. K. Yamashita, D.S. Hirashima, Phys. Rev. B 79(1), 014501 (2009)

    Article  ADS  Google Scholar 

  9. A. Del Maestro, I. Affleck, Phys. Rev. B 82(6), 060515 (2010)

    Article  Google Scholar 

  10. M. Tsukamoto, M. Tsubota, J. Low Temp. Phys. 162(5/6), 603 (2011)

    Article  ADS  Google Scholar 

  11. I. Danshita, A. Polkovnikov, Phys. Rev. A 85, 023638 (2012)

    Article  ADS  Google Scholar 

  12. R.G. Melko, A.W. Sandvik, D.J. Scalapino, Phys. Rev. B 69, 014509 (2004)

    Article  ADS  Google Scholar 

  13. T. Eggel, M.A. Cazalilla, M. Oshikawa, Phys. Rev. Lett. 107, 275302 (2011)

    Article  ADS  Google Scholar 

  14. N. Wada, M.W. Cole, J. Phys. Soc. Jpn. 77(11), 111012 (2008)

    Article  ADS  Google Scholar 

  15. S. Inagaki, S. Guan, Y. Fukushima, T. Ohsuna, O. Terasaki, J. Am. Chem. Soc. 121(41), 9611 (1999)

    Article  Google Scholar 

  16. N. Wada, T. Matsushita, M. Hieda, R. Toda, J. Low Temp. Phys. 157(3–4 Sp. Iss. SI), 324 (2009)

    Article  ADS  Google Scholar 

  17. R. Toda, M. Hieda, T. Matsushita, N. Wada, J. Taniguchi, H. Ikegami, S. Inagaki, Y. Fukushima, Phys. Rev. Lett. 99(25), 255301 (2007)

    Article  ADS  Google Scholar 

  18. T. Matsubara, H. Matsuda, Prog. Theor. Phys. 16(6), 569 (1956)

    Article  ADS  Google Scholar 

  19. T. Minoguchi, Y. Nagaoka, Prog. Theor. Phys. 80(3), 397 (1988)

    Article  ADS  Google Scholar 

  20. K. Shirahama, M. Kubota, S. Ogawa, N. Wada, T. Watanabe, Phys. Rev. Lett. 64, 1541 (1990)

    Article  ADS  Google Scholar 

  21. A. Kotani, K. Yamashita, D.S. Hirashima, Phys. Rev. B 83, 174515 (2011)

    Article  ADS  Google Scholar 

  22. A. Del Maestro, M. Boninsegni, I. Affleck, Phys. Rev. Lett. 106, 105303 (2011)

    Article  ADS  Google Scholar 

  23. H. Yano, T. Jocha, N. Wada, Phys. Rev. B 60(1), 543 (1999)

    Article  ADS  Google Scholar 

  24. M. Hieda, K. Matsuda, T. Kato, T. Matsushita, N. Wada, J. Phys. Soc. Jpn. 78(3), 033604 (2009)

    Article  ADS  Google Scholar 

  25. V. Ambegaokar, B.I. Halperin, D.R. Nelson, E.D. Siggia, Phys. Rev. Lett. 40(12), 783 (1978)

    Article  ADS  Google Scholar 

  26. J. Taniguchi, K. Demura, M. Suzuki, Phys. Rev. B 88, 014502 (2013)

    Article  ADS  Google Scholar 

  27. J. Taniguchi (private communication)

Download references

Acknowledgments

We would like to thank Y. Nakanishi, T. Endoh, and M. Okamoto for experimental assistance. We acknowledge K. Yamashita and D. S. Hirashima for stimulating discussions on the 1D superfluidity and for permitting us to use their calculation shown in Fig. 5(a). This work was supported by JSPS KAKENHI Grant Number 26287077.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Wada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsushita, T., Shinohara, A., Hieda, M. et al. Superfluid Onset of \(^{4}\)He Nanotube Depending on a One-Dimensional Length. J Low Temp Phys 183, 273–283 (2016). https://doi.org/10.1007/s10909-015-1393-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-015-1393-8

Keywords

Navigation