Skip to main content
Log in

Phononic Thermal Conduction Engineering for Bolometers: From Phononic Crystals to Radial Casimir Limit

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We discuss two alternative and complementary means of controlling radial phonon conduction for bolometers in two dimensions: by using phononic crystals or by roughening the surface of the membranes (Casimir limit). For phononic crystals, we present new experiments with a modified geometry and a larger hole periodicity than before, achieving a low thermal conductance \({\sim }2\) pW/K at 150 mK. Calculations in the Casimir limit, on the other hand, show that for small detector dimensions thermal conductance below 1 fW/K seems achievable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J.N. Ullom, D.A. Bennett, Supercond. Sci. Technol. 28, 084003 (2015)

    Article  ADS  Google Scholar 

  2. P. Khosropanah, T. Suzuki, R.A. Hijmering, M.L. Ridder, M.A. Lindeman, J.-R. Gao, H. Hoevers, J. Low Temp. Phys. 176, 363 (2014)

    Article  ADS  Google Scholar 

  3. M. Kenyon, P.K. Day, C.M. Bradford, J.J. Bock, H.G. Leduc, Proc. SPIE 6275, 627508 (2006)

    Article  Google Scholar 

  4. D.J. Goldie, A.V. Velichko, D.M. Glowacka, S. Withington, J. Appl. Phys. 109, 084507 (2011)

    Article  ADS  Google Scholar 

  5. D. Osman, S. Withington, D.J. Goldie, D.M. Glowacka, J. Appl. Phys. 116, 064506 (2014)

    Article  ADS  Google Scholar 

  6. K. Rostem, D.T. Chuss, F.A. Colazo, E.J. Crowe, K.L. Denis, N.P. Lourie, S.H. Moseley, T.R. Stevenson, E.J. Wollack, J. Appl. Phys. 115, 124508 (2014)

    Article  ADS  Google Scholar 

  7. Y. Pennec, J.O. Vasseur, B. Djafari-Rouhani, L. Dobrzynski, P.A. Deymier, Surf. Sci. Rep. 65, 229 (2010)

    Article  ADS  Google Scholar 

  8. H.B.G. Casimir, Physica 5, 595 (1938)

    Google Scholar 

  9. N. Zen, T.A. Puurtinen, T.J. Isotalo, S. Chaudhuri, I.J. Maasilta, Nat. Commun. 5, 3435 (2014)

    Article  ADS  Google Scholar 

  10. T.A. Puurtinen, I.J. Maasilta, AIP Adv. 4, 124503 (2014)

    Article  ADS  Google Scholar 

  11. I.J. Maasilta, AIP Adv. 1, 041704 (2011)

    Article  ADS  Google Scholar 

  12. W.T. Perrins, D.R. McKenzie, R.C. McPherdan, Proc. R. Soc. Lond. A 369, 207 (1979)

    Article  ADS  Google Scholar 

  13. T. Kühn, D.V. Anghel, J.P. Pekola, M. Manninen, Y.M. Galperin, Phys. Rev. B 70, 125425 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported by Academy of Finland project Number 260880.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. J. Maasilta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maasilta, I.J., Puurtinen, T.A., Tian, Y. et al. Phononic Thermal Conduction Engineering for Bolometers: From Phononic Crystals to Radial Casimir Limit. J Low Temp Phys 184, 211–216 (2016). https://doi.org/10.1007/s10909-015-1372-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-015-1372-0

Keywords

Navigation