Skip to main content
Log in

Thermal Conductance of Titanium Hot-Electron Bolometers with Different Microbridge Thicknesses

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Hot-electron bolometers (HEBs) based on Johnson noise thermometry are potential terahertz detectors with high sensitivity and wide dynamic range. Understanding the thermal conductance of these detectors is crucial, as their sensitivity scales linearly with this property. In this paper, we focus on the experimental study of the thermal conductance of the titanium HEBs with different microbridge thicknesses ranging from 15 to 59 nm. We find that the thermal conductance of the HEBs takes a temperature power law of Tn, and the exponent n decreases from 3.4 to 2.8 as the microbridge thickness increases. The variation of the exponent n is mainly due to electron diffusion, which is not completely suppressed by superconducting contacts and is stronger in thick microbridges. In addition, we observed that the thermal radiation from the low-noise amplifier for Johnson noise readout may raise the electron temperature by about 30 mK at the bath temperature of 0.25 K, giving an excessive thermal conductance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. K.D. Irwin, G.C. Hilton, Cryogenic Particle Detection. Top. Appl. Phys. 99, 63 (2005)

    Article  Google Scholar 

  2. P.K. Day, H.G. LeDuc, B.A. Mazin et al., Nature 425, 817 (2003). https://doi.org/10.1038/nature02037

    Article  ADS  Google Scholar 

  3. C.M. Posada, P.A.R. Ade, Z. Ahmed et al., Supercond. Sci. Technol. 28, 9 (2015). https://doi.org/10.1088/0953-2048/28/9/094002

    Article  Google Scholar 

  4. M. Calvo, A. Benoit, A. Catalano et al., J. Low Temp. Phys. 184, 3 (2016). https://doi.org/10.1007/s10909-016-1582-0

    Article  Google Scholar 

  5. J. Wei, D. Olaya, B.C. Karasik et al., Nat. Nanotechnol. 3, 496–500 (2008). https://doi.org/10.1038/nnano.2008.173

    Article  ADS  Google Scholar 

  6. B.S. Karasik, C.B. McKitterick, T.J. Reck et al., IEEE Trans. Terahertz Sci. Technol. 5, 16 (2015). https://doi.org/10.1109/TTHZ.2014.2370755

    Article  Google Scholar 

  7. B.S. Karasik, A.V. Sergeev, D.E. Prober, IEEE Trans. Terahertz Sci. Technol. 1, 97 (2011). https://doi.org/10.1109/TTHZ.2011.2159560

    Article  ADS  Google Scholar 

  8. W. Miao, F.M. Li, Z.Z. He et al., Appl. Phys. Lett. 118, 013104 (2021). https://doi.org/10.1063/5.0030704

    Article  ADS  Google Scholar 

  9. Z. Wang, W. Zhang, W. Miao et al., IEEE Trans. Appl. Supercond. 28, 2100204 (2018). https://doi.org/10.1109/TASC.2018.2799418

    Article  Google Scholar 

  10. J.M. Graybeal, M.R. Beasley, Phys. Rev. B 29, 4167 (1984). https://doi.org/10.1103/PhysRevB.29.4167

    Article  ADS  Google Scholar 

  11. M. Yu, M. Strongin, A. Paskin, Phys. Rev. B 14, 996 (1976). https://doi.org/10.1103/PhysRevB.14.996

    Article  ADS  Google Scholar 

  12. J. Wei, Ph. D. thesis, Rutgers University (2007). https://ui.adsabs.harvard.edu/abs/2007PhDT........29W/abstract

  13. K.C. Fong, K.C. Schwab, Phys. Rev. X 2, 031006 (2012). https://doi.org/10.1103/PhysRevX.2.031006

    Article  Google Scholar 

  14. A. Sergeev, V. Mitin, Europhys. Lett. 51, 641 (2000). https://doi.org/10.1209/epl/i2000-00386-y

    Article  ADS  Google Scholar 

  15. A. Sergeev, V. Mitin, Phys. Rev. B 61, 6041 (2000). https://doi.org/10.1103/PhysRevB.61.6041

    Article  ADS  Google Scholar 

  16. M. H. Shen, Ph. D. thesis, Yale University (2005). https://rsl.yale.edu/sites/default/files/files/RSL_Theses/MinghaoThesis.pdf

  17. C.B. McKitterick, D.E. Prober, H. Vora et al., J. Phys. Condens. Matter 27, 164203 (2015). https://doi.org/10.1088/0953-8984/27/16/164203

    Article  ADS  Google Scholar 

  18. W. Miao, H. Gao, Z. Wang et al., J. Low Temp. Phys. 193, 387 (2018). https://doi.org/10.1007/s10909-018-1972-6

    Article  ADS  Google Scholar 

  19. M.E. Gershenson, D. Gong, T. Sato et al., Appl. Phys. Lett. 79, 2049 (2001). https://doi.org/10.1063/1.1407302

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported in part by NSFC under Grant Nos. 11873099, 11922308, and U1931123, in part by CAS under Grant GJJSTD20210002, in part by the National Key R&D Program of China under Grant 2018YFA0404701, and in part by the CAS Key Lab for Radio Astronomy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. Miao or S. C. Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F.M., Miao, W., Luo, Q.H. et al. Thermal Conductance of Titanium Hot-Electron Bolometers with Different Microbridge Thicknesses. J Low Temp Phys 211, 248–254 (2023). https://doi.org/10.1007/s10909-022-02937-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02937-z

Keywords

Navigation