Skip to main content
Log in

On the Paramagnetic Impurity Concentration of Silicate Glasses from Low-Temperature Physics

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The concentration of paramagnetic trace impurities in glasses can be determined via precise SQUID measurements of the sample’s magnetization in a magnetic field. However, the existence of quasi-ordered structural inhomogeneities in the disordered solid causes correlated tunneling currents that can contribute to the magnetization, surprisingly, also at the higher temperatures. We show that taking into account such tunneling systems gives rise to a good agreement between the concentrations extracted from SQUID magnetization and those extracted from low-temperature heat capacity measurements. Without suitable inclusion of such magnetization contribution from the tunneling currents, we find that the concentration of paramagnetic impurities gets considerably over-estimated. This analysis represents a further positive test for the structural inhomogeneity theory of the magnetic effects in the cold glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Herrmannsdörfer, R. König, Magnetic impurities in glass and silver powder at milli- and microkelvin temperatures. J. Low Temp. Phys. 118(1–2), 45–57 (2000)

    Article  ADS  Google Scholar 

  2. L. Siebert, Ph.D. Thesis, Heidelberg University, 2001, http://www.ub.uni-heidelberg.de/archiv/1601

  3. S. Ludwig, P. Nagel, S. Hunklinger, C. Enss, Magnetic field dependent coherent polarization echoes in glasses. J. Low Temp. Phys. 131(1–2), 89–111 (2003)

    Article  ADS  Google Scholar 

  4. P. Esquinazi (ed.), Tunneling Systems in Amorphous and Crystalline Solids (Springer, Berlin, 1998)

    Google Scholar 

  5. G. Schuster, G. Hechtfischer, D. Buck, W. Hoffmann, Thermometry below 1 K. Rep. Prog. Phys. 57(2), 187–230 (1994)

    Article  ADS  Google Scholar 

  6. W.A. Phillips, Two-level States in glasses. Rep. Prog. Phys. 50(12), 1657–1708 (1987)

    Article  ADS  Google Scholar 

  7. H.M. Carruzzo, E.R. Grannan, C.C. Yu, Nonequilibrium dielectric behavior in glasses at low temperatures: evidence for interacting defects. Phys. Rev. B 50(10), 6685–6695 (1994)

    Article  ADS  Google Scholar 

  8. G. Jug, M. Paliienko, Multilevel tunneling systems and fractal clusters in the low-temperature mixed alkali-silicate glasses. Sci. World J. 2013, 1–20 (2013)

    Article  Google Scholar 

  9. M. Wohlfahrt, P. Strehlow, C. Enss, S. Hunklinger, Magnetic-field effects in non-magnetic glasses. Europhys. Lett. 56, 690–694 (2001)

    Article  ADS  Google Scholar 

  10. A. Würger, A. Fleischmann, C. Enss, Dephasing of atomic tunneling by nuclear quadrupoles. Phys. Rev. Lett. 89(23), 37601 (2002)

    Article  Google Scholar 

  11. G. Jug, Theory of the thermal magnetocapacitance of multi-component silicate glasses at low temperature. Phil. Mag. 84(33), 3599–3615 (2004)

    Article  ADS  Google Scholar 

  12. A. Borisenko, Hole-compensated Fe\(^{3+}\) impurities in quartz glasses: a contribution to sub-kelvin thermodynamics. J. Phys. 19(41), 416102 (2007)

    Google Scholar 

  13. R.W. Simmonds, K.M. Lang, D.A. Hite, S. Nam, D.P. Pappas, J.M. Martinis, Decoherence in josephson phase qubits from junction resonators. Phys. Rev. Lett. 93(7), 077003 (2004)

    Article  ADS  Google Scholar 

  14. A. Amir, Y. Oreg, Y. Imry, On relaxations and aging in various glasses. Proc. Nat. Acad. Sci. 109(6), 1850–1855 (2012)

    Article  ADS  Google Scholar 

  15. S. Ludwig, D.D. Osheroff, Field-induced structural aging in glasses at ultralow temperatures. Phys. Rev. Lett. 91(10), 105501 (2003)

    Article  ADS  Google Scholar 

  16. H. Paik, K.D. Osborn, Reducing quantum-regime Dielectric Loss of Silicon Nitride for Superconducting Quantum Circuits. Appl. Phys. Lett. 96, 072505 (2010)

    Article  ADS  Google Scholar 

  17. X. Liu, D.R. Queen, T.H. Metcalf, J.E. Karel, F. Hellman, Hydrogen-free amorphous silicon with no tunneling states. Phys. Rev. Lett. 113, 025503 (2014)

    Article  ADS  Google Scholar 

  18. A.M. Zagoskin, S. Ashhab, J.R. Johansson, F. Nori, Quantum two-level systems in josephson junctions as naturally formed qubits. Phys. Rev. Lett. 97, 077001 (2006)

    Article  ADS  Google Scholar 

  19. E.-J. Donth, The Glass Transition (Springer, Berlin, 2001)

    Book  Google Scholar 

  20. L. Berthier, G. Biroli, Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83(2), 587–645 (2011)

    Article  ADS  Google Scholar 

  21. R.B. Stephens, Intrinsic low-temperature thermal properties of glasses. Phys. Rev. B 13(2), 852 (1976)

    Article  ADS  Google Scholar 

  22. K. Vollmayr-Lee, A. Zippelius, Heterogeneities in the glassy state. Phys. Rev. E 72(4), 041507 (2005)

    Article  ADS  Google Scholar 

  23. L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti and W. van Saarloos (eds.): Dynamical Heterogeneities in Glasses, Colloids and Granular Media, (Oxford University press, Oxford, 2011)

  24. A.C. Wright, Crystalline-like ordering in melt-quenched network glasses? J. Non-cryst. Solids 401, 4–26 (2014)

    Article  Google Scholar 

  25. M.M.J. Treacy, K.B. Borisenko, The local structure of amorphous silicon. Science 335(6071), 950–953 (2012)

    Article  ADS  Google Scholar 

  26. J. Hwang, Z.H. Melgarejo, Y.E. Kalay, I. Kalay, M.J. Kramer, D.S. Stone, P.M. Voyles, Nanoscale structure and structural relaxation in Zr\(_50\)Cu\(_45\)Al\(_5\) bulk metallic glass. Phys. Rev. Lett. 108(19), 195505 (2012)

    Article  ADS  Google Scholar 

  27. H. Bach, D. Krause, Analysis of the Composition and Structure of Glass and Glass Ceramics (Springer, New York, 1999)

    Book  Google Scholar 

  28. C.C. Yu, A.J. Leggett, Low temperature properties of amorphous materials: through a glass darkly. Comments Condens. Matter Phys. 14(4), 231–251 (1988)

    Google Scholar 

  29. A. Heuer, Properties of a glass-forming system as derived from its potential energy landscape. Phys. Rev. Lett. 78(21), 4051–4054 (1997)

    Article  ADS  Google Scholar 

  30. J.A. Sussmann, Electric dipoles due to trapped electrons. Proc. Phys. Soc. 79, 758–774 (1962)

    Article  MATH  ADS  Google Scholar 

  31. G. Jug, Multiple-well tunneling model for the magnetic-field effect in ultracold glasses. Phys. Rev. B 79(18), 180201 (2009)

    Article  ADS  Google Scholar 

  32. G. Jug, M. Paliienko, S. Bonfanti, The glassy state magnetically viewed from the frozen end. J. Non-Crys. Solids 401, 66–72 (2014)

    Article  Google Scholar 

  33. G. Jug, M. Paliienko, Evidence for a two-component tunnelling mechanism in the multicomponent glasses at low temperatures. Europhys. Lett. 90, 36002 (2010)

    Article  ADS  Google Scholar 

  34. A. Churkin, D. Barash, M. Schechter, Non-homogeneity of the density of states of tunneling two-level systems at low energies. Phys. Rev. B 89, 104202 (2014)

    Article  ADS  Google Scholar 

  35. A. Abragam, B. Bleaney, The Physical Principles of Electron Paramagnetic Resonance (Clarendon, Oxford, 1970)

    Google Scholar 

  36. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976)

    Google Scholar 

  37. M. Paliienko: Multiple-welled tunnelling systems in glasses at low temperatures (Ph.D. Thesis, Università degli Studi dell’Insubria, 2011) http://insubriaspace.cineca.it/handle/10277/420

  38. B. Henderson, G.F. Imbush, Optical Spectroscopy of Inorganic Solids (Oxford University Press, New York, 1989)

    Google Scholar 

  39. A. Borisenko, G. Jug, Paramagnetic tunneling systems and their contribution to the polarization echo in glasses. Phys. Rev. Lett. 107, 075501 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

One of us (SB) acknowledges support from the Italian Ministry of Education, University and Research (MIUR) through a Ph.D. Grant of the Progetto Giovani (ambito indagine n.7: materiali avanzati (in particolare ceramici) per applicazioni strutturali), as well as from the Bando VINCI-2014 of the Università Italo-Francese. The other Author (GJ) is grateful to the Laboratoire des Verres et Colloïdes in Montpellier for hospitality and for many stimulating discussions, as well as to the Referees for useful comments on the manuscript. Enlightening conversations with Carlo Dossi and Paolo Sala about glass contaminants are also kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Jug.

Appendix

Appendix

Here we present our preliminary study of the SQUID magnetization data (also available from [2]) for the borosilicate glass BK7, for which however no substantial magnetic effect in the heat capacity \(C_p\) has been reported [2]. This glass has a nominal Fe-impurity concentration of \(\bar{n}_{Fe^{3+}} = 6\) ppm [2, 3, 9], yet our best fit in Fig. 9 with both Langevin (Eq. 15) and ATS (Eq. 19) contributions produces the concentrations and parameters given in Table 10. The best fit was carried out with knowledge of ATS parameters from our own theory [32] for the magnetic effect in the polarization-echo experiments at mK temperatures [3]. We conclude that our main contention is once more confirmed, in that the concentration of Fe in BK7 we extract in this way is only about 1.1 ppm and the bulk of the SQUID magnetization is due to the ATSs. Table 10 reports our very first estimate of \(n_{ATS}P^{*}\) for BK7. Assuming \(P^{*}\) to be of order 1 and about the same for all glasses, we conclude that the concentration \(n_{ATS}\) of the ATSs nesting in the RERs is very similar for all of the multi-silicate glasses by us studied for their remarkable magnetic effects. From the present SQUID-magnetization best fits we have obtained 5.74\(\times 10^{16}\) g\(^{-1}\) (BAS glass), 8.68\(\times 10^{16}\) g\(^{-1}\) (Duran), and 1.40\(\times 10^{16}\) g\(^{-1}\) (BK7). The almost negligible magnetic effect in \(C_p\) for BK7 is due, in our approach, to the low values of the cutoffs \(D_{0min}\) and \(D_{0max}\) for this system (these parameters appearing in the prefactor and in the integrals’ bounds determining the ATS contribution to \(C_p\) [8]).

Table 10 Extracted parameters (from the magnetization data of [2]) for the concentration of ATSs and Fe-impurities of the BK7 (\(\sum _i\xi _iA_i\)= 63.530 g mol\(^{-1}\) [2]). The vertical offset represents the residual Larmor diamagnetic contribution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonfanti, S., Jug, G. On the Paramagnetic Impurity Concentration of Silicate Glasses from Low-Temperature Physics. J Low Temp Phys 180, 214–237 (2015). https://doi.org/10.1007/s10909-015-1311-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-015-1311-0

Keywords

Navigation