Skip to main content
Log in

Vortex Dynamics in a Spin-Orbit-Coupled Bose-Einstein Condensate

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Vortices in a one-component dilute atomic ultracold Bose–Einstein condensate (BEC) usually arise as a response to externally driven rotation. Apart from a few special situations, these vortices are singly quantized with unit circulation (Fetter, Rev Mod Phys 81, 647–691, 2009). Recently, the NIST group has constructed a two-component BEC with a spin-orbit-coupled Hamiltonian involving Pauli matrices (Spielman, Phys Rev A 79, 063613, 2009; Y.-J. Lin et al., Nature 462, 628–632, 2009; Y.-J. Lin et al., Nature 471, 83–87, 2011), and I here study the dynamics of a two-component vortex in such a spin-orbit-coupled condensate. These spin-orbit-coupled BECs use an applied magnetic field to split the hyperfine levels. Hence, they rely on a focused laser beam to trap the atoms. In addition, two Raman laser beams create an effective (or synthetic) gauge potential. The resulting spin-orbit Hamiltonian is discussed in some detail. The various laser beams are fixed in the laboratory, so that it is not feasible to nucleate a vortex by an applied rotation that would need to rotate all the laser beams and the magnetic field. In a one-component BEC, a vortex can also be created by a thermal quench, starting from the normal state and suddenly cooling deep into the condensed state (Freilich et al., Science 329, 1182–1185, 2010). I propose that a similar method would work for a vortex in a spin-orbit-coupled BEC. Such a vortex has two components, and each has its own circulation quantum number (typically \(0,\pm 1\)). If both components have the same circulation, I find that the composite vortex should execute uniform precession, like that observed in a single-component BEC (Freilich et al., Science 329, 1182–1185, 2010). In contrast, if one component has unit circulation and the other has zero circulation, then some fraction of the dynamical vortex trajectories should eventually leave the condensate, providing clear experimental evidence for this unusual vortex structure. In the context of exciton–polariton condensates, such a vortex is known as a “half-quantum vortex” (Rubo, Phys Rev Lett 99, 106401, 2007; Lagoudakis et al., Science 326, 974–976, 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. I.B. Spielman, Raman processes and effective gauge potentials. Phys. Rev. A 79, 063613 (2009)

    Article  ADS  Google Scholar 

  2. Y.-J. Lin, R.L. Compton, K. Jiménez-García, J.V. Porto, I.B. Spielman, Synthetic magnetic fields for ultracold neutral atoms. Nature 462, 628–632 (2009)

    Article  ADS  Google Scholar 

  3. Y.-J. Lin, K. Jiménez-García, I.B. Spielman, Spin-orbit-coupled Bose-Einstein condensates. Nature 471, 83–87 (2011)

    Article  ADS  Google Scholar 

  4. A.L. Fetter, A.A. Svidzinsky, Vortices in a trapped dilute Bose-Einstein condensate. J. Phys. Condens. Matter 13, R135–R194 (2001)

    Article  ADS  Google Scholar 

  5. A.L. Fetter, Rotating trapped Bose-Einstein condensates. Rev. Mod. Phys. 81, 647–691 (2009)

    Article  ADS  Google Scholar 

  6. B.P. Anderson, P.C. Haljan, C.E. Wieman, E.A. Cornell, Vortex precession in Bose-Einstein condensates: observations with filled and empty cores. Phys. Rev. Lett. 85, 2857 (2000)

    Article  ADS  Google Scholar 

  7. D.V. Freilich, D.M. Bianchi, A.M. Kaufman, T.K. Langin, D.S. Hall, Real-time dynamics of single vortex lines and vortex dipoles in a Bose-Einstein condensate. Science 329, 1182–1185 (2010)

    Article  ADS  Google Scholar 

  8. J. Radić, T.A. Sedrakyan, I.B. Spielman, V. Galitski, Vortices in spin-orbit coupled Bose-Einstein condensates. Phys. Rev. A 84, 063604 (2011)

    Article  ADS  Google Scholar 

  9. A.L. Fetter, Vortex dynamics in spin-orbit coupled Bose-Einstein condensates. Phys. Rev. A 89, 023629 (2014)

    Article  ADS  Google Scholar 

  10. Y.G. Rubo, Half vortices in exciton polariton condensates. Phys. Rev. Lett. 99, 106401 (2007)

    Article  ADS  Google Scholar 

  11. K.G. Lagoudakis, T. Ostatnický, A.V. Kavokin, Y.G. Rubo, R. André, B. Deveaud-Plédran, Observation of half-quantum vortices in an exciton-polariton condensate. Science 326, 974–976 (2009)

    Article  ADS  Google Scholar 

  12. J. Dalibard, F. Gerbier, G. Juzeliūnas, P. Öhberg, Colloquium: artificial gauge potentials for neutral atoms. Rev. Mod. Phys. 83, 1523–1543 (2011)

    Article  ADS  Google Scholar 

  13. H. Zhai, Spin-orbit coupled quantum gases. Int. J. Mod. Phys. B 26, 1230001 (2012)

    Article  ADS  Google Scholar 

  14. V. Galitski, I.B. Spielman, Spin-orbit coupling in quantum gases. Nature 494, 49–54 (2013)

    Article  ADS  Google Scholar 

  15. N. Goldman, G. Juzeliūnas, P. Öhberg, I. B. Spielman, Light-induced gauge fields for ultracold atoms, arXiv:1308.6533v2 (2013)

  16. H. Zhai, Degenerate quantum gases with spin-orbit coupling, arXiv:1403.8021v1 (2014)

  17. J. Struck, C. Ölschläger, M. Weinberg, P. Hauke, J. Simonet, A. Eckardt, M. Lewenstein, K. Sengstock, P. Windpassinger, Tunable gauge potential for neutral and spinless particles in driven lattices. Phys. Rev. Lett. 108, 225304 (2012)

    Article  ADS  Google Scholar 

  18. M. Aidelsburger, M. Atala, M. Lohse, J.T. Barreiro, B. Paredes, I. Bloch, Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett. 111, 185301 (2013)

    Article  ADS  Google Scholar 

  19. H. Miyake, G.A. Siviloglou, C.J. Kennedy, W.C. Burton, W. Ketterle, Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices. Phys. Rev. Lett. 111, 185302 (2013)

    Article  ADS  Google Scholar 

  20. G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, T. Esslinger, Experimental realization of the topological Haldane model. Nature 515, 237–240 (2014)

    Article  ADS  Google Scholar 

  21. M. Mancini, G. Pagano, G. Cappellini, L. Livi, M. Rider, J. Catani, C. Sias, P. Zoller, M. Inguscio, M. Dalmonte, L. Fallani, Observation of chiral edge states with neutral fermions in synthetic Hall ribbons, arXiv:1502.02495v1 (2015)

  22. B. K. Stuhl, H.-I. Lu, L. M. Aycock, D. Genkina, and I. B. Spielman, Visualizing edge states with an atomic Bose gas in the quantum Hall regime, arXiv:1502.02496v1 (2015)

  23. J. Jang, D.G. Ferguson, V. Vakaryuk, R. Budakian, S.B. Chung, P.M. Goldbart, Y. Maeno, Observation of half-height magnetization steps in Sr\(_2\)RuO\(_4\). Science 331, 186–188 (2011)

    Article  ADS  Google Scholar 

  24. A. Ramanathan, S.R. Muniz, K.C. Wright, R.P. Anderson, W.D. Phillips, K. Helmerson, G.C. Campbell, Partial-transfer absorption imaging: a versatile technique for optimal imaging of ultracold gases. Rev. Sci. Instrum. 83, 083119 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Part of this article was written during a visit to the Institute for Advanced Study, Tsinghua University, Beijing, and I am grateful to T.-L. Ho and H. Zhai for their hospitality. I thank W. Zheng for a valuable discussion concerning the interpretation of the synthetic electric field in Fig. 2. I. Spielman and D. Hall have provided copies of some of their figures, and I thank them for their assistance. I am grateful to G.-Q. Liu and D. W. Snoke for discussions of the half-quantum vortices in exciton–polariton condensates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander L. Fetter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fetter, A.L. Vortex Dynamics in a Spin-Orbit-Coupled Bose-Einstein Condensate. J Low Temp Phys 180, 37–52 (2015). https://doi.org/10.1007/s10909-015-1294-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-015-1294-x

Keywords

Navigation