Skip to main content
Log in

Path Integral Monte Carlo Study Confirms a Highly Ordered Snowball in 4He Nanodroplets Doped with an Ar+ Ion

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

By means of the Path Integral Monte Carlo method, we have performed a detailed microscopic study of 4He nanodroplets doped with an argon ion, Ar\(^+\), at \({T=0.5}\) K. We have computed density profiles, energies, dissociation energies, and characterized the local order around the ion for nanodroplets with a number of 4He atoms ranging from 10 to 64 and also 128. We have found the formation of a stable solid structure around the ion, a “snowball”, consisting of three concentric shells in which the 4He atoms are placed at the vertices of platonic solids: the first inner shell is an icosahedron (12 atoms); the second one is a dodecahedron with 20 atoms placed on the faces of the icosahedron of the first shell; the third shell is again an icosahedron composed of 12 atoms placed on the faces of the dodecahedron of the second shell. The “magic numbers” implied by this structure, 12, 32, and 44 helium atoms, have been observed in a recent experimental study (Bartl et al., J Phys Chem A 118:8050, 2014) of these complexes; the dissociation energy curve computed in the present work shows jumps in correspondence with those found in the nanodroplets abundance distribution measured in that experiment, strengthening the agreement between theory and experiment. The same structures were predicted in Galli et al. (J Phys Chem A 115:7300, 2011) in a study regarding Na+@4He\(_n\) when \(n>30\); a comparison between Ar+@4He\(_n\) and Na+@4He\(_n\) complexes is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P. Bartl, C. Leidlmair, S. Denifl, P. Scheier, O. Echt, J. Phys. Chem. A 118, 8050 (2014)

    Article  Google Scholar 

  2. D.E. Galli, D.M. Ceperley, L. Reatto, J. Phys. Chem. A 115, 7300 (2011)

    Article  Google Scholar 

  3. A.L. Fetter, in The Physics of Liquid Helium, Part I, ed. by K.H. Bennemann, J.B. Ketterson (Wiley, New York, 1976), p. 207

    Google Scholar 

  4. K.R. Atkins, Phys. Rev. 116, 1339 (1959)

    Article  ADS  Google Scholar 

  5. J.P. Toennies, A.F. Vilesov, Annu. Rev. Phys. Chem. 49, 1 (1998)

    Article  ADS  Google Scholar 

  6. M. Barranco, R. Guardiola, S. Hernández, R. Mayol, J. Navarro, M. Pi, J. Low Temp. Phys. 142, 1 (2006)

    Article  ADS  Google Scholar 

  7. J. Tiggesbaumker, F. Stienkemeier, Phys. Chem. Chem. Phys. 9, 4748 (2007)

    Article  Google Scholar 

  8. E. Lugovoj, J.P. Toennies, A.F. Vilesov, J. Chem. Phys. 112, 8217 (2000)

    Article  ADS  Google Scholar 

  9. S.A. Krasnokutski, F. Huisken, J. Phys. Chem. A 115, 7120 (2011)

    Article  Google Scholar 

  10. K.B. Whaley, in Advances in Molecular Vibrations and Collision Dynamics, vol. 3, ed. by J.M. Bowman, Z. Bačić (JAI Press, Stamford, 1998), p. 397

    Google Scholar 

  11. J.P. Toennies, A.F. Vilesov, K.B. Whaley, Phys. Today 54, 31 (2001)

    Article  Google Scholar 

  12. C. Callegari, K.K. Lehmann, R. Schmied, G. Scoles, J. Chem. Phys. 115, 10090 (2001)

    Article  ADS  Google Scholar 

  13. F. Stienkemeier, A.F. Vilesov, J. Chem. Phys. 115, 10119 (2001)

    Article  ADS  Google Scholar 

  14. M. Buzzacchi, D.E. Galli, L. Reatto, Phys. Rev. B 64, 094512 (2001)

    Article  ADS  Google Scholar 

  15. D.E. Galli, M. Buzzacchi, L. Reatto, J. Chem. Phys. 115, 10239 (2001)

    Article  ADS  Google Scholar 

  16. M. Rossi, M. Verona, D.E. Galli, L. Reatto, Phys. Rev. B 69, 212510 (2004)

    Article  ADS  Google Scholar 

  17. E. Coccia, E. Bodo, F. Marinetti, F.A. Gianturco, E. Yildrim, M. Yurtsever, E. Yurtsever, J. Chem. Phys. 126, 124319 (2007)

    Article  ADS  Google Scholar 

  18. S. Paolini, F. Ancilotto, F. Toigo, J. Chem. Phys. 126, 124317 (2007)

    Article  ADS  Google Scholar 

  19. E. Coccia, E. Bodo, F.A. Gianturco, EPL 82, 23001 (2008)

    Article  ADS  Google Scholar 

  20. T. Kojima, N. Kobayashi, Y. Kaneko, Z. Phys. D: Atoms Mol. Clust. 22, 645 (1992)

    Article  Google Scholar 

  21. B.E. Callicoatt, K. Förde, T. Ruchti, L. Jung, K.C. Janda, N. Halberstadt, J. Chem. Phys. 108, 9371 (1998)

    Article  ADS  Google Scholar 

  22. C.A. Brindle, M.R. Prado, K.C. Janda, N. Halberstadt, M. Lewerenz, J. Chem. Phys. 123, 064312 (2005)

    Article  ADS  Google Scholar 

  23. J.H. Kim, D.S. Peterka, C.C. Wang, D.M. Neumark, J. Chem. Phys. 124, 214301 (2006)

    Article  ADS  Google Scholar 

  24. F. Ferreira da Silva, P. Bartl, S. Denifl, O. Echt, T.D. Mark, P. Scheier, Phys. Chem. Chem. Phys. 11, 9791 (2009)

    Article  Google Scholar 

  25. A. Carrington, C.A. Leach, A.J. Marr, A.M. Shaw, M.R. Viant, J.M. Hutson, M.M. Law, J. Chem. Phys. 102, 2379 (1995)

    Article  ADS  Google Scholar 

  26. R. Ahlrichs, H.J. Böhm, S. Brode, K.T. Tang, J.P. Toennies, J. Chem. Phys. 88, 6290 (1988)

    Article  ADS  Google Scholar 

  27. R.A. Aziz, V.P.S. Nain, J.S. Carley, W.L. Taylor, G.T. McConville, J. Chem. Phys. 70, 4330 (1979)

    Article  ADS  Google Scholar 

  28. E.L. Pollock, D.M. Ceperley, Phys. Rev. B 36, 8343 (1987)

    Article  ADS  Google Scholar 

  29. D.M. Ceperley, Rev. Mod. Phys. 67, 279 (1995)

    Article  ADS  Google Scholar 

  30. M. Boninsegni, N. Prokof’ev, B. Svistunov, Phys. Rev. Lett. 96, 070601 (2006)

    Article  ADS  Google Scholar 

  31. M. Boninsegni, N.V. Prokof’ev, B.V. Svistunov, Phys. Rev. E 74, 036701 (2006)

    Article  ADS  Google Scholar 

  32. F. Mezzacapo, M. Boninsegni, Phys. Rev. Lett. 97, 045301 (2006)

    Article  ADS  Google Scholar 

  33. F. Mezzacapo, M. Boninsegni, Phys. Rev. A 75, 033201 (2007)

    Article  ADS  Google Scholar 

  34. R.E. Zillich, J.M. Mayrhofer, S.A. Chin, J. Chem. Phys. 132, 044103 (2010)

    Article  ADS  Google Scholar 

  35. L. An der Lan, P. Bartl, C. Leidlmair, R. Jochum, S. Denifl, O. Echt, P. Scheier, Chem. Eur. J. 18, 4411 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the CINECA and the Regione Lombardia award, under the LISA initiative, for the availability of high performance computing resources, and support. We acknowledge Prof. Olof Echt for bringing to our attention the results of Ref. [1].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Galli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tramonto, F., Salvestrini, P., Nava, M. et al. Path Integral Monte Carlo Study Confirms a Highly Ordered Snowball in 4He Nanodroplets Doped with an Ar+ Ion. J Low Temp Phys 180, 29–36 (2015). https://doi.org/10.1007/s10909-014-1266-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1266-6

Keywords

Navigation