Skip to main content
Log in

EPR Study of Superconductors

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Historical review on the studies of the electron paramagnetic resonance in superconductors performed in the period from 1970 to 1990 at the Kazan Physical Technical Institute of the Russian Academy of Sciences (group of Dr. E. G. Kharakhash’yan) in collaboration with Kazan State University (group of Prof. B. I. Kochelaev) and with the Institute for Physical Problems of Russian Academy of Sciences (group of Prof. N. E. Alekseevskii) is presented. We have observed for the first time the electron paramagnetic resonance of impurities in a type II superconductor; found indication for a long-range exchange interaction between magnetic impurities arising due to the superconducting correlations; observed the magnetic ordering of impurities in the superconducting state; and, finally, we found one of the first evidences for heterogeneity of the 1:2:3 high-\(T_c\) superconductor which is its natural property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Such calculations have been also performed by Orbach [76].

References

  1. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 106, 162 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  2. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. L.C. Hebel, C.P. Slichter, Phys. Rev. 107, 901 (1957)

    Article  ADS  Google Scholar 

  4. M. Weger, Preprint (1972)

  5. W. Fite, A.G. Redfield, Phys. Rev. 162, 358 (1967)

    Article  ADS  Google Scholar 

  6. A.A. Abrikosov, Zh. Eksper. Teor. Fiz. 32, 1442 (1957)

    Google Scholar 

  7. A.A. Abrikosov, Sov. Phys. JETP 5, 1174 (1957)

  8. T.S. Al’tshuler, I.A. Garifullin, E.G. Kharakhash’yan, Fiz. Tverd. Tela 14, 263 (1972)

    Google Scholar 

  9. T.S. Al’tshuler, I.A. Garifullin, E.G. Kharakhash’yan, Sov. Phys. Solid State 14, 213 (1972)

  10. C. Rettori, D. Davidov, P. Chaikin, R. Orbach, Phys. Rev. Lett. 30, 437 (1973)

    Article  ADS  Google Scholar 

  11. C. Rettori, D. Davidov, R. Orbach, E.P. Chock, B. Ricks, Phys. Rev. B 7, 1 (1973)

    Article  ADS  Google Scholar 

  12. U. Engel, K. Baberschke, G. Koopman, S. Hüfner, Solid State Commun. 12, 977 (1973)

    Article  ADS  Google Scholar 

  13. K. Baberschke, U. Engel, S. Hüfner, Solid State Commun. 15, 1101 (1974)

    Article  ADS  Google Scholar 

  14. Y. Yafet, D.C. Vier, S. Schultz, J. Appl. Phys. 55, 2022 (1984)

    Article  ADS  Google Scholar 

  15. H. Hasegawa, Progr. Theor. Phys. 27, 483 (1959)

    Article  ADS  Google Scholar 

  16. J.E. Crow, R.P. Guertin, K.D. Parks, Phys. Rev. Lett. 19, 77 (1967)

    Article  ADS  Google Scholar 

  17. N.E. Alekseevskii, I.A. Garifullin, B.I. Kochelaev, E.G. Kharakhash’yan, Pis’ma v Zh. Eksp. i Teor. Fiziki 18, 323 (1973)

    Google Scholar 

  18. N.E. Alekseevskii, I.A. Garifullin, B.I. Kochelaev, E.G. Kharakhash’yan, Sov. Phys. JETP Lett. 18, 189 (1973)

  19. B.I. Kochelaev, E.G. Kharakhash’yan, I.A. Garifullin, N.E. Alekseevskii, Proceedings of 18th AMPERE Congress, Nottingham, 1974, p. 23.

  20. N.E. Alekseevskii, I.A. Garifullin, B.I. Kochelaev, E.G. Kharakhash’yan, Zh. Eksp. Teor. Fiz. 72, 1523 (1977)

    Google Scholar 

  21. N.E. Alekseevskii, I.A. Garifullin, B.I. Kochelaev, E.G. Kharakhash’yan, Sov. Phys. JETP 45, 799 (1977)

  22. D. Rossier, D.E. MacLaughlin, Phys. Kondens. Mater. 11, 66 (1970)

    ADS  Google Scholar 

  23. J. Korringa, Physica (Utrecht) 16, 601 (1950)

    Article  ADS  MATH  Google Scholar 

  24. A.A. Abrikosov, L.P. Gor’kov, Zh. Eksp. Teor. Fiz. 42, 1242 (1961)

    Google Scholar 

  25. A.A. Abrikosov, L.P. Gor’kov, Sov. Phys. JETP 16, 879 (1963)

  26. R. Orbach, Proc. R. Soc. Lond. Ser. A 264, 458–485 (1961)

  27. L.K. Aminov, Zh. Eksp. Teor. Fiz. 42, 783 (1962)

    Google Scholar 

  28. L.K. Aminov, Sov. Phys. JETP 15, 547 (1962)

  29. M.A. Ruderman, C. Kittel, Phys. Rev. 96, 99 (1954)

    Article  ADS  Google Scholar 

  30. T. Kasuya, Prog. Theor. Phys. 16, 45 (1956)

    Article  ADS  MATH  Google Scholar 

  31. K. Yosida, Phys. Rev. 106, 893 (1957)

    Article  ADS  Google Scholar 

  32. K.H.R. Taylor, M. Darby, Physics of Rare Solids (Chapman and Hall, London, 1972)

    Google Scholar 

  33. K. Maki, Phys. Rev. B 8, 191 (1973)

    Article  ADS  Google Scholar 

  34. P.W. Anderson, H. Suhl, Phys. Rev. 116, 898 (1969)

    Article  ADS  Google Scholar 

  35. M.B. Maple, Appl. Phys. 9, 179 (1976)

    Article  ADS  Google Scholar 

  36. S. Roth, Appl. Phys. 15, 1 (1978)

    Article  ADS  Google Scholar 

  37. L.P. Gor’kov, Zh. Eksp. Teor. Fiz. 37, 1407 (1959)

    MathSciNet  Google Scholar 

  38. L.P. Gor’kov, Sov. Phys. JETP 10, 998 (1960)

  39. B.I. Kochelaev, L.R. Tagirov, M.G. Khusainov, Zh. Eksp. Teor. Fiz. 76, 578 (1979)

    Google Scholar 

  40. B.I. Kochelaev, L.R. Tagirov, M.G. Khusainov, Sov. Phys. JETP 49, 291 (1979)

  41. J.C. Bednorz, K.A. Müller, Z. Phys. 64, 189 (1986)

    Article  Google Scholar 

  42. M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Z. Wang, C.W. Chu, Phys. Rev. Lett. 58, 908 (1987)

    Article  ADS  Google Scholar 

  43. R.J. Cava, B. Batlogg, R.B. van Dover, D.W. Murphy, S. Sunchine, T. Segrist, J.P. Remeika, E.A. Rietman, S. Zahurack, G.P. Espinosa, Phys. Rev. Lett. 58, 1676 (1987)

    Article  ADS  Google Scholar 

  44. C. Kaji, S. Koriyama, S. Nagano, J. Cer, Soc. Jpn. 96, 433 (1988)

    Google Scholar 

  45. N.E. Alekseevskii, I.A. Garifullin, N.N. Garif’yanov, B.I. Kochelaev, A.V. Mitin, V.I. Nizhankovskii, L.R. Tagirov, G.G. Khaliullin, E.P. Khlybov, Pis’ma v. Zh. Eksp. Teor. Fiz. 48, 36 (1988)

    ADS  Google Scholar 

  46. N.E. Alekseevskii, I.A. Garifullin, N.N. Garif’yanov, B.I. Kochelaev, A.V. Mitin, V.I. Nizhankovskii, L.R. Tagirov, G.G. Khaliullin, E.P. Khlybov, JETP Lett. 48, 37 (1988)

    ADS  Google Scholar 

  47. N.E. Alekseevskii, A.V. Mitin, V.I. Nizhankovskii, I.A. Garifullin, N.N. Garif’yanov, G.G. Khaliullin, E.P. Khlybov, B.I. Kochelaev, L.R. Tagirov, J. Low Temp. Phys. 77, 87 (1989)

    Article  ADS  Google Scholar 

  48. Yu. Mei, C.J. Jiang, S.M. Green, H.L. Luo, C. Politis, Z. Phys. 69, 11 (1987)

    Article  Google Scholar 

  49. N. Blombergen, J. Appl. Phys. 23, 1383 (1952)

    Article  ADS  Google Scholar 

  50. J.M. Tranquada, A.H. Moudden, A.I. Goldman, P. Zolliker, P.E. Cox, G. Shirane, Phys. Rev. B 38, 2477 (1988)

    Article  ADS  Google Scholar 

  51. J.J. Caponi, C. Challout, A.W. Hewat, P. Lejay, M. Marezio, N. Nguen, B. Raveau, J.L. Soubeyroux, J.L. Tholence, R. Tournier, Europhys. Lett. 3, 130 (1987)

    Google Scholar 

  52. P. Kuiper, G. Kruzinga, J. Ghijsen, M. Grioni, P.J.W. Weijs, F.M.F. de Groot, G.A. Sawatzky, H. Verweij, L.F. Feiner, H. Petersen, Phys. Rev. B 38, 6483 (1988)

    Article  ADS  Google Scholar 

  53. A.G. Khachaturyan, S.V. Semenovskaya, J.W. Morris Jr, Phys. Rev. B 37, 2243 (1988)

    Article  ADS  Google Scholar 

  54. A.G. Khachaturyan, J.W. Morris Jr, Phys. Rev. Lett. 61, 215 (1988)

    Article  ADS  Google Scholar 

  55. J. Orenstein, A.J. Mills, Science 288, 468 (2000)

    Article  ADS  Google Scholar 

  56. P.W. Anderson, Science 288, 480 (2000)

    Article  Google Scholar 

  57. E. Dagotto, Science 309, 257 (2005)

    Article  ADS  Google Scholar 

  58. D.A. Bonn, Nat. Phys. 2, 159 (2006)

    Article  Google Scholar 

  59. B. Elschner, A. Loidl, Electron-spin resonance on localized magnetic moments in metals, Handbook on the Physics and Chemistry of Rare Earths, vol. 24 (Elsevier, Amsterdam, 1997), pp. 221–337

    Google Scholar 

  60. A. Jánossy, T. Fehér, G. Oszlányi, G.V.M. Williams, Phys. Rev. Lett. 79, 2726 (1997)

    Article  Google Scholar 

  61. T. Fehér, A. Jánossy, G. Oszlányi, F. Simon, B. Dabrowski, P.W. Klamut, M. Horvatić, G.V.M. Williams, Phys. Rev. Lett. 85, 5627 (2000)

    Article  ADS  Google Scholar 

  62. V. Kataev, B. Rameev, B. Büchner, M. Hücker, R. Borowski, Phys. Rev. B 56, R3394 (1997)

    Article  ADS  Google Scholar 

  63. V. Kataev, B. Rameev, A. Validov, B. Büchner, M. Hücker, R. Borowski, Phys. Rev. B 58, R11876 (1998)

    Article  ADS  Google Scholar 

  64. B.I. Kochelaev, L. Kan, B. Elschner, S. Elschner, Phys. Rev. B 49, 13106 (1994)

    Article  ADS  Google Scholar 

  65. B.I. Kochelaev, J. Sichelschmidt, B. Elschner, W. Lemor, A. Loidl, Phys. Rev. Lett. 79, 4274 (1997)

    Article  ADS  Google Scholar 

  66. F. Simon, A. Jánossy, T. Fehér, F. Murányi, S. Garaj, L. Forró, C. Petrovic, S.L. Bud’ko, G. Lapertot, V.G. Kogan, P.C. Canfield, Phys. Rev. Lett. 87, 047002 (2001)

    Article  ADS  Google Scholar 

  67. Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008)

    Article  Google Scholar 

  68. N. Pascher, J. Deisenhofer, H.-A. Krug von Nidda, M. Hemmida, H.S. Jeevan, P. Gegenwart, A. Loidl, Phys. Rev. B 82, 054525 (2010)

    Article  ADS  Google Scholar 

  69. H.-A. Krug von Nidda, S. Kraus, S. Schaile, E. Dengler, N. Pascher, M. Hemmida, M.J. Eom, J.S. Kim, H.S. Jeevan, P. Gegenwart, J. Deisenhofer, A. Loidl, Phys. Rev. B 86, 094411 (2012)

    Article  ADS  Google Scholar 

  70. A. Alfonsov, F. Muranyi, V. Kataev, G. Lang, N. Leps, L. Wang, R. Klingeler, A. Kondrat, C. Hess, S. Wurmehl, A. Koehler, G. Behr, S. Hampel, M. Deutschmann, S. Katrych, N.D. Zhigadlo, Z. Bukowski, J. Karpinski, B. Büchner, Phys. Rev. B 83, 94526 (2011)

    Article  ADS  Google Scholar 

  71. A. Alfonsov, F. Muranyi, N. Leps, R. Klingeler, A. Kondrat, C. Hess, S. Wurmehl, A. Koefiler, G. Behr, V. Kataev, B. Büchner, J. Exp. Theor. Phys. 114, 662 (2012)

    Article  ADS  Google Scholar 

  72. A.I. Buzdin, L.N. Bulaevskii, Adv. Phys. 34, 175 (1985)

    Article  ADS  Google Scholar 

  73. I.A. Garifullin, D.A. Tikhonov, N.N. Garif’yanov, M.Z. Fattakhov, K. Theis-Bröhl, K. Westerholt, H. Zabel, Appl. Magn. Reson. 22, 439 (2002)

    Article  Google Scholar 

  74. R.I. Salikhov, I.A. Garifullin, N.N. Garif’yanov, L.R. Tagirov, K. Theis-Bröhl, K. Westerholt, H. Zabel, Phys. Rev. Lett. 102, 087003 (2009)

    Article  ADS  Google Scholar 

  75. R.I. Salikhov, N.N. Garif’yanov, I.A. Garifullin, L.R. Tagirov, K. Westerholt, H. Zabel, Phys. Rev. B 80, 214523 (2009)

    Article  ADS  Google Scholar 

  76. R. Orbach, Phys. Lett. A 47, 281 (1974)

Download references

Acknowledgments

The author is grateful to Dr. Vladislav Kataev for helpful discussion. Further we thank Dr. Aidar Validov for technical support in the spectra restoration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Garifullin.

Appendices

Appendix 1: EPR Line Shape in a Superconductor

In the previous Section we present the experimental evidence for the possibility to observe EPR of a localized moment in the superconducting state. Surprisingly the observed linewidth did not exceed its value in the normal state. This means that in order to understand the reason for unchanged linewidth upon transition from the normal to the mixed superconducting state it is necessary to calculate line shape in the Abrikosov [6, 7] vortex state taking into account the magnetic field distribution [76].Footnote 1 This mixed state is characterized by the presence of an ordered lattice of tubes of magnetic flux, or vortices, surrounded and maintained by superconducting currents. The magnetic field decreases from a maximum value at the center of an isolated vortex over a characteristic distance \(\lambda \), the London penetration depth. The superconducting order parameter grows from zero at the center of the vortex over a distance of the order of \(\xi (T)\), the coherence length, with \(\xi (T) < \lambda (T)\). For applied fields far from both \(H_{c1}\) and \(H_{c2}\) (the lower and upper critical fields, respectively) the vortex density is not too great. Experiments by Redfield [5] in this region confirmed the ordered arrangement of the vortices, and verified that the lattice symmetry was triangular.

The distribution of the probabilities of encountering a given magnetic field in a triangular vortex lattice can be approximated by the analytic function [22]

$$\begin{aligned} f(x)= \left\{ \begin{array}{lcl} 0.837-0.500\ln {(-x)},&{}\quad 0.08<x<0 \\ 0.236-0.576\ln {x}, &{}\quad 0<x<0.92 \end{array} \right. \end{aligned}$$
(3)

Here \(x = (H - H_s)/(Hv - H_c)\), \(H_v\) and \(H_c\) are the maximum and minimum fields in the lattice, and \(H_s\) is the field at the saddle point of the unit cell of the vortex lattice. If the shape of the homogeneously broadened EPR line in metal is determined by the Lorentz line

$$\begin{aligned} I_{norm}(H)={{1}\over {\pi }}{{{\Delta H}+H}\over {(\Delta H)^2+H^2}} \end{aligned}$$
(4)

where \(\Delta H\) is the half-width of the line at half-height and \(H\) is the magnetic field relative to the center, then the EPR line shape with allowance for the broadening due to the vortex lattice is determined by the convolution

$$\begin{aligned} I_{sup}(H)=\int {I_{norm}(H_1-H)f\left( {{H_1-H_c}\over {H_v-H_c}}\right) dH_1} \end{aligned}$$
(5)

The observed behavior of the spectrum is qualitatively consistent with the absence of pronounced broadening in the superconducting state due to the vortex structure at certain values of parameters. The average internal field is smaller than in the normal state, that is, a part of the flux is excluded. Increasing the amplitude of the high-field wing of the resonance line is due to the discontinuity at the maximum field \(H_v\).

Appendix 2: Electron Bottleneck and \(T_c\)-Suppression by Magnetic Impurity

For nonmagnetic metals, NMR relaxation rate always complies to the Korringa law [23], that is, the linear dependence of the spin-lattice relaxation rate on the temperature. In contrast to NMR in EPR in metals, conduction electrons cannot generally be considered to be in equilibrium and this leads to some complications in the theory. The best known of these is the “electron bottleneck” effect. If cross relaxation between the localized moments and conduction electrons is rapid, spin angular momentum transferred to the conduction electrons can be transferred back to the localized moments before it has time to decay to the lattice. The apparent rate of relaxation of the local moments is then determined by the conduction electron’s spin-lattice relaxation (see Fig. 12). The bottleneck affects the position as well as the width of the resonance line.

Fig. 12
figure 12

The relaxation paths involved in the EPR bottleneck. The rates \(\delta _{ie}\) and \(\delta _{ei}\) result from the exchange interaction; these rates denote transfer of magnetization from and to the localized moments and conduction electron subsystems

There are two regimes for EPR. First, isothermal regime (\(\delta _{ei}<<\delta _{eL}\)). The thermal broadening of the EPR linewidth is determined by the Korringa law

$$\begin{aligned} \delta _{ie}^{Kor}={{\pi }\over {\hbar }}[J_{sf} \rho (E_f)]^2 k_B T, \end{aligned}$$
(6)

and the \(g\)-shift

$$\begin{aligned} \Delta g_{max}=J_{sf}\rho (E_f), \end{aligned}$$
(7)

where \(\hbar \) is the Plank constant and \(\rho (E_f)\) is the density of states of the conduction electrons with given spin orientation on the Fermi surface, and \(J_{sf}\) is the \(sf\)-exchange integral between localized moments and conduction electrons.

Experimentally one observes in addition a residual linewidth \(a\)

$$\begin{aligned} \Delta H=a+bT,\ \ \ b={{\hbar \delta _{ie}^{Kor}}\over {g\mu _B T}}. \end{aligned}$$
(8)

Second, bottleneck regime (\(\delta _{ei}\ge \delta _{eL}\)).

Very often for high concentration of impurity, \(\delta _{ei}\) may be of the same order of magnitude as \(\delta _{eL}\). Then the subsystem of the conduction electrons is not longer in thermal equilibrium with lattice. The effective relaxation rate \(\delta _{ie}\) is reduced. This was first calculated by Hasegawa [15].

Assuming \(g_i \simeq g_e\), the theory yields

$$\begin{aligned}&\displaystyle \delta _{ie}={{\delta _{eL}}\over {\delta _{ei}+\delta _{eL}}}\delta _{ie}^{Kor},\ \ b={{\hbar }\over {g\mu _B}}\left( {{\delta _{eL}\over {\delta _{ei}+\delta _el}}}\right) {{\delta _{ie}^{Kor}\over {T}}}.&\end{aligned}$$
(9)
$$\begin{aligned}&\displaystyle \Delta g=\left( {{\delta eL}\over {\delta _{ei}+\delta _{eL}}}\right) \Delta g_{max}.&\end{aligned}$$
(10)

Thus \(\delta _{ie}^{Kor}\) corresponds to the “Korringa rate” and \(\delta _{ei}\) to the “Overhauser rate” which can be also obtained from “detailed balance” to susceptibility of the two subsystems \(\chi _i/\chi _e=\delta _{ei}/\delta _{ie}\). Thus

$$\begin{aligned} \delta _{ei}={{2\pi }\over {\hbar }}\rho (E_f)J_{sf}^2 S(S+1)c. \end{aligned}$$
(11)

From another side, \(\delta _{ei}\) is the controlling parameter for pair breaking in the superconducting state. The theory by Abrikosov-Gor’kov [24, 25] well describes the \(T_c\)-suppression by magnetic impurity.

$$\begin{aligned} \ln (T_c/T_{c0}=\psi \left( {{1}\over {2}}\right) -\psi \left( {{1}\over {2}}+0.14{{\alpha }\over {\alpha _{cr}}} {{T_{c0}}\over {T_c}}\right) . \end{aligned}$$
(12)

The pair-breaking parameter \(\alpha \) and its critical value \(\alpha _{cr}\), where superconductivity is completely destroyed, are given by the theory in the first Born approximation

$$\begin{aligned} 4\hbar \alpha _{cr}&= k_BT_{c0}/\gamma ;\end{aligned}$$
(13)
$$\begin{aligned} 4\hbar \alpha _{cr}&= c \rho (E_f)J_{sf}^2 S(S+1). \end{aligned}$$
(14)

This equation yields

$$\begin{aligned} \left| {{\mathrm{d}T_c}\over {\mathrm{d}c}}\right| ={{3\hbar \pi }\over {16k_B}}{{\mathrm{d}\delta _{ei}}\over {\mathrm{d}c}}. \end{aligned}$$
(15)

This means that

$$\begin{aligned} \left| {{\mathrm{d}T_c}\over {\mathrm{d}c}}\right| =-{{\pi ^2}\over {8k_B}} c\rho (E_f)J_{sf}^2S(S+1). \end{aligned}$$
(16)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garifullin, I.A. EPR Study of Superconductors. J Low Temp Phys 178, 243–271 (2015). https://doi.org/10.1007/s10909-014-1252-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1252-z

Keywords

Navigation