Skip to main content
Log in

Dynamic Many-Body Theory: Dynamic Structure Factor of Two-Dimensional Liquid \(^4\)He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We calculate the dynamic structure function of two-dimensional liquid \(^4\)He at zero temperature employing a quantitative multi-particle fluctuations approach up to infinite order. We observe a behavior that is qualitatively similar to the phonon–maxon–roton-curve in 3D, including a Pitaevskii plateau (Pitaevskii, Sov. Phys. JETP 9:830, 1959). Slightly below the liquid–solid phase transition, a second weak roton-like excitation evolves below the plateau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Lambert, D. Salin, J. Joffrin, R. Scherm, J. Phys. Lett. 38(18), 377 (1977)

    Article  Google Scholar 

  2. W. Thomlinson, J.A. Tarvin, L. Passell, Phys. Rev. Lett. 123, 241 (1980)

    Google Scholar 

  3. H.J. Lauter, H. Godfrin, V.L.P. Frank, P. Leiderer, in Excitations in Two-Dimensional and Three-Dimensional Quantum Fluids. NATO Advanced Study Institute, Series B: Physics, ed. by A.F.G. Wyatt, H.J. Lauter (Plenum, New York, 1991), pp. 419–427

    Chapter  Google Scholar 

  4. H.J. Lauter, H. Godfrin, P. Leiderer, J. Low Temp. Phys. 87, 425 (1992)

    Article  ADS  Google Scholar 

  5. C.C. Chang, M. Cohen, Phys. Rev. B 11, 1059 (1975)

    Article  ADS  Google Scholar 

  6. E. Krotscheck, G.X. Qian, W. Kohn, Phys. Rev. B 31, 4245 (1985)

    Article  ADS  Google Scholar 

  7. E. Krotscheck, Phys. Rev. B 31, 4258 (1985)

    Article  ADS  Google Scholar 

  8. C. Ji, M. Wortis, Phys. Rev. B 34, 7704 (1986)

    Article  ADS  Google Scholar 

  9. J.L. Epstein, E. Krotscheck, Phys. Rev. B 37, 1666 (1988)

    Article  ADS  Google Scholar 

  10. E. Krotscheck, C.J. Tymczak, Phys. Rev. B 45, 217 (1992)

    Article  ADS  Google Scholar 

  11. K.A. Gernoth, J.W. Clark, J. Low Temp. Phys. 96, 153 (1994)

    Article  ADS  Google Scholar 

  12. B.E. Clements, E. Krotscheck, C.J. Tymczak, Phys. Rev. B 53, 12253 (1996)

    Article  ADS  Google Scholar 

  13. R.P. Feynman, Phys. Rev. 94(2), 262 (1954)

    Article  ADS  MATH  Google Scholar 

  14. V. Apaja, E. Krotscheck, Phys. Rev. B 64, 134503 (2001)

    Article  ADS  Google Scholar 

  15. H.W. Jackson, E. Feenberg, Ann. Phys. (NY) 15, 266 (1961)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. H.W. Jackson, E. Feenberg, Rev. Mod. Phys. 34(4), 686 (1962)

    Article  ADS  MATH  Google Scholar 

  17. C.C. Chang, C.E. Campbell, Phys. Rev. B 13(9), 3779 (1976)

    Article  ADS  Google Scholar 

  18. B.E. Clements, H. Godfrin, E. Krotscheck, H.J. Lauter, P. Leiderer, V. Passiouk, C.J. Tymczak, Phys. Rev. B 53, 12242 (1996)

    Article  ADS  Google Scholar 

  19. C.E. Campbell, E. Krotscheck, T. Lichtenegger, Dynamic many body theory III: Multi-particle fluctuations in bulk \(^4\)He (2014) (In preparation)

  20. C.E. Campbell, B. Fåk, H. Godfrin, E. Krotscheck, H.J. Lauter, T. Lichtenegger, J. Ollivier, H. Schober, A. Sultan (2014) (in preparation)

  21. H.M. Böhm, R. Holler, E. Krotscheck, M. Panholzer, Phys. Rev. B 82(22), 224505/1 (2010)

    Article  ADS  Google Scholar 

  22. E. Krotscheck, T. Lichtenegger (2014) (in preparation)

  23. C.E. Campbell, E. Krotscheck, J. Low Temp. Phys. 158, 226 (2010)

    Article  ADS  Google Scholar 

  24. H. Godfrin, M. Meschke, H.J. Lauter, A. Sultan, H.M. Böhm, E. Krotscheck, M. Panholzer, Nature 483, 576579 (2012)

    Article  Google Scholar 

  25. E. Vitali, M. Rossi, L. Reatto, D.E. Galli, Phys. Rev. B 82, 174510 (2010)

    Article  ADS  Google Scholar 

  26. A. Roggero, F. Pederiva, G. Orlandini, Phys. Rev. B 88, 094302 (2013)

    Article  ADS  Google Scholar 

  27. M. Nava, D.E. Galli, S. Moroni, E. Vitali, Phys. Rev. B 87, 145506 (2013)

    Article  ADS  Google Scholar 

  28. E. Feenberg, Theory of Quantum Fluids (Academic, New York, 1969)

    Google Scholar 

  29. R.A. Aziz, V.P.S. Nain, J.C. Carley, W.J. Taylor, G.T. McConville, J. Chem. Phys. 70, 4330 (1979)

    Article  ADS  Google Scholar 

  30. J. Boronat, Microscopic Approaches to Quantum Liquids, in Confined Geometries, ed. by E. Krotscheck, J. Navarro (World Scientific, Singapore, 2002), pp. 21–90

    Google Scholar 

  31. C.E. Campbell, Phys. Lett. A 44, 471 (1973)

    Article  ADS  Google Scholar 

  32. E. Krotscheck, Phys. Rev. B 33, 3158 (1986)

    Article  ADS  Google Scholar 

  33. P. Kramer, M. Saraceno, Geometry of the Time-Dependent Variational Principle in Quantum Mechanics, Lecture Notes in Physics (Springer, Berlin, 1981)

    Book  MATH  Google Scholar 

  34. A.K. Kerman, S.E. Koonin, Ann. Phys. (NY) 100, 332 (1976)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. R.P. Feynman, M. Cohen, Phys. Rev. 102, 1189 (1956)

    Article  ADS  MATH  Google Scholar 

  36. H.W. Jackson, Phys. Rev. A 8, 1529 (1973)

    Article  ADS  Google Scholar 

  37. D.K. Lee, F.J. Lee, Phys. Rev. B 11, 4318 (1975)

    Article  ADS  Google Scholar 

  38. C.C. Chang, C.E. Campbell, Phys. Rev. B 15(9), 4238 (1977)

    Article  ADS  Google Scholar 

  39. C.E. Campbell, E. Krotscheck, Phys. Rev. B 80, 174501/1 (2009)

    Article  ADS  Google Scholar 

  40. H.W. Jackson, Phys. Rev. A 9(2), 964 (1974)

    Article  ADS  Google Scholar 

  41. M. Saarela, V. Apaja, J. Halinen, Microscopic Approaches to Quantum Liquids, in Confined Geometries, ed. by E. Krotscheck, J. Navarro (World Scientific, Singapore, 2002), pp. 139–205

    Google Scholar 

  42. E. Krotscheck, J. Paaso, M. Saarela, K. Schörkhuber, Phys. Rev. B 64(5/6), 054504 (2001)

    Article  ADS  Google Scholar 

  43. F. Arrigoni, E. Vitali, D.E. Galli, L. Reatto, Excitation spectrum in two-dimensional superfluid \(^4\)He. Low Temp. Phys. 39(9), 793–800 (2013)

    Article  ADS  Google Scholar 

  44. H.J. Maris, Rev. Mod. Phys. 49, 341 (1977)

    Article  ADS  Google Scholar 

  45. V. Apaja, J. Halinen, V. Halonen, E. Krotscheck, M. Saarela, Phys. Rev. B 55, 12925 (1997)

    Article  ADS  Google Scholar 

  46. L.P. Pitaevskii, Zh. Eksp. Theor. Fiz. 36, 1168 (1959). [Sov. Phys. JETP 9, 830 (1959)]

    Google Scholar 

  47. R.P. Feynman, Progress in Low Temperature Physics, Vol. I, Chap. 2. (North Holland, Amsterdam, 1955)

    Google Scholar 

  48. P. Nozières, J. Low Temp. Phys. 137, 45 (2004)

    Article  ADS  Google Scholar 

  49. P. Nozières, J. Low Temp. Phys. 142(1–2), 91 (2006)

    Article  ADS  Google Scholar 

  50. P. Whitlock, G. Chester, M. Kalos, Phys. Rev. B 38(4), 2418 (1988)

    Article  ADS  Google Scholar 

  51. J. Halinen, V. Apaja, K. Gernoth, M. Saarela, J. Low Temp. Phys. 121(5–6), 531 (2000)

    Article  ADS  Google Scholar 

  52. V. Apaja, J. Halinen, M. Saarela, Physica B 284, 29 (2000)

    Article  ADS  Google Scholar 

  53. V. Apaja, M. Saarela, Europhys. Lett. (EPL) 84(4), 40003 (2008)

    Article  ADS  Google Scholar 

  54. A.D. Jackson, B.K. Jennings, R.A. Smith, A. Lande, Phys. Rev. B 24, 105 (1981)

    Article  ADS  Google Scholar 

  55. A. Macia, D. Hufnagl, F. Mazzanti, J. Boronat, R.E. Zillich, Phys. Rev. Lett. 109, 235307 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to thank J. Boronat, C. E. Campbell, F. Gasparini, and H. Godfrin for useful discussions. This work was supported, in part, by the Austrian Science Fund FWF under Project I602. Additional support was provided by a grant from the Qatar National Research Fund # NPRP NPRP 5 - 674 - 1 - 114.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Krotscheck.

Appendices

Appendix 1: Long-Wavelength Dispersion in 2D

In this appendix, we study the analytic structure of the self-energy as a function of an external energy \(\hbar \omega \) in the limit \(\hbar \omega - 2 \varepsilon _0(k/2)\rightarrow 0\). We assume that the solution \(\varepsilon _0(k)\) of the implicit equation (16) has a negligible imaginary part.

We look for processes where a state of wave vector \(\mathbf{k}\) decays into two phonons of wave vectors \(\mathbf{p}_1\) and \(\mathbf{p}_2\). In general one expects, for long wavelengths, a phonon dispersion relation of the form (21). In fact, it is easily shown that Eq. (16) leads to such a dispersion relation.

The calculation is best carried out in relative and center of mass momenta, i.e., we set

$$\begin{aligned} {\mathbf {p}}_1 = {\mathbf {q}}- \frac{1}{2}{\mathbf {k}}\quad {\mathbf {p}}_2 = -{\mathbf {q}}- \frac{1}{2}{\mathbf {k}}. \end{aligned}$$

Then, it is clear that

$$\begin{aligned} \varepsilon _0(|{\mathbf {k}}/2+{\mathbf {q}}|) +\varepsilon _0(|\mathbf{k}/2-{\mathbf {q}}|) \end{aligned}$$
(26)

has, for all angles \(\cos \theta \equiv x \equiv \hat{\mathbf {q}}\cdot \hat{\mathbf {k}}\), a relative extremum at \(q=0\), viz.

$$\begin{aligned} \varepsilon _0(p_1)+\varepsilon _0(p_2) = 2\varepsilon _0(k/2) + \left[ \frac{2\varepsilon _0'(k/2)}{k}(1-x^2) + \varepsilon _0''(k/2)x^2\right] q^2 +{\fancyscript{O}}(q^3). \end{aligned}$$
(27)

For further reference, abbreviate for \(\gamma k^2\ll 1\):

$$\begin{aligned} \varepsilon _0'\equiv \varepsilon _0'(k/2) = \hbar c,\quad \varepsilon _0''\equiv \varepsilon _0''(k/2) = 6\hbar c\gamma k. \end{aligned}$$

and define with \(\Delta E\equiv \hbar \omega - 2\varepsilon _0(k/2)\)

$$\begin{aligned} q_-=\sqrt{\frac{k|\Delta E|}{2\varepsilon _0'}} \quad q_+=\sqrt{\frac{|\Delta E|}{|\varepsilon _0''|}}. \end{aligned}$$
(28)

The value \(2\varepsilon _0(k/2)\) is, at \(x=1\), a relative minimum if \(\varepsilon _0'' > 0\) (anomalous dispersion) and a relative maximum for \(\varepsilon _0'' < 0\) (normal dispersion). We are interested only in the non-analytic behavior as \(\Delta E\rightarrow 0\) which is caused by the second-order singularity of the energy denominator as \(q\rightarrow 0\).To calculate this behavior, we write

$$\begin{aligned} \left| V^{(3)}\left( \mathbf{k};\mathbf{q}-\frac{1}{2}\mathbf{k}, -\mathbf{q}-\frac{1}{2}\mathbf{k}\right) \right| ^2&= \left| V^{(3)}\left( \mathbf{k},-\frac{1}{2}\mathbf{k}.-\frac{1}{2}\mathbf{k}\right) \right| ^2 + \Delta V(\mathbf{k},\mathbf{q})\nonumber \\&\equiv \left| V^{(3)}(\mathbf{k})\right| ^2 + \Delta V(\mathbf{k},\mathbf{q}). \end{aligned}$$
(29)

\(\Delta V(\mathbf{k},\mathbf{q})\) still contributes to the imaginary part, but not to the non-analytic behavior. We do the calculation first for the case of anomalous dispersion and keep only \(\left| V^{(3)}(\mathbf{k})\right| ^2\). Since \(\left| V^{(3)}(\mathbf{k})\right| ^2\) does not depend on the momentum transfer \(q\), we must introduce a cutoff wave number \(Q\) to make the integrals convergent; this does not affect the result on the non-analyticity of the self-energy. We find

$$\begin{aligned} \varSigma (k,\hbar \omega )&\approx \frac{ \left| V^{(3)}(\mathbf{k})\right| ^2}{2(2\pi )^2\rho } \int \frac{\mathrm{{d}}^2q}{\hbar \omega -\varepsilon _0(p_1)-\varepsilon _0(p_2)+\mathrm{i}\eta }\nonumber \\&\approx \frac{ \left| V^{(3)}(\mathbf{k})\right| ^2}{2(2\pi )^2\rho } \int \frac{\mathrm{{d}}^2q}{e_0(q)+(e_1(q)-e_0(q))\cos ^2\theta +\mathrm{i}\eta }\nonumber \\&= \frac{ \left| V^{(3)}(\mathbf{k})\right| ^2}{4\pi \rho } \int _{0}^{Q} \frac{q \mathrm{{d}}q}{\sqrt{e_0(q)e_1(q)}}\text {sign}(e_0(q)), \end{aligned}$$
(30)

where \(e_0(q)\equiv \Delta E-\frac{2\varepsilon _0'}{k}q^2\) and \(e_1(q)\equiv \Delta E -\varepsilon _0''q^2\) are the values of the energy denominator at \(x=0\) and \(x=1\). For \(\Delta E>0\) the integrand is real for \(0\le q\le q_-\) and \(q_+\le q\) and imaginary for \(q_-\le q\le q_+\),

$$\begin{aligned} \varSigma (k,\hbar \omega )&= \frac{ \left| V^{(3)}(\mathbf{k})\right| ^2}{4\pi \rho } \int _{0}^{Q} \frac{q \mathrm{{d}}q}{\sqrt{e_0(q)e_1(q)}}\text {sign}(e_0(q))\nonumber \\&= \frac{ \left| V^{(3)}(\mathbf{k})\right| ^2}{4\pi \rho } \sqrt{\frac{k}{2\varepsilon '_0\varepsilon _0''}} \Biggl [\int _{0}^{q_-} \frac{q \mathrm{{d}}q}{\sqrt{(q_-^2-q^2)(q_+^2-q^2)}}\nonumber \\&\quad -\,\mathrm{i}\int _{q_-}^{q_+} \frac{q \mathrm{{d}}q}{\sqrt{(q^2-q_-^2)(q_+^2-q^2)}}-\int _{q_+}^{Q} \frac{q \mathrm{{d}}q}{\sqrt{(q^2-q_-^2)(q^2-q_+^2)}}\Biggr ] \nonumber \\&\approx \frac{\left| V^{(3)}(\mathbf{k})\right| ^2}{4\pi \rho } \sqrt{\frac{k}{2\varepsilon '_0\varepsilon _0''}} \left[ \ln q_+ -\ln 2Q -\mathrm{i}\frac{\pi }{2}\right] , \end{aligned}$$
(31)

For \(\Delta E<0\), the integral is real and identical to the real part of Eq. (31), thus

$$\begin{aligned} \varSigma (k,\hbar \omega )\!\approx \! \frac{\left| V^{(3)}(\mathbf{k})\right| ^2}{4\pi \rho } \sqrt{\frac{k}{2\varepsilon '_0\varepsilon _0''}} \left[ \ln q_+\!\! -\!\mathrm{i}\frac{\pi }{2}\theta (\Delta E)\right] \!=\! \frac{\left| V^{(3)}(\mathbf{k})\right| ^2}{8\pi \rho } \sqrt{\frac{k}{2\varepsilon '_0\varepsilon _0''}} \!\ln \!\left( \!-\!\!\frac{\Delta E}{\varepsilon _0''}\right) .\nonumber \\ \end{aligned}$$
(32)

where \(Q \gg q_+\gg q_-\) was used. The sign of the imaginary part was chosen to guarantee causality.

Arguing along the same lines as for anomalous dispersion, one finds for \(\varepsilon _0''<0\) and \(\Delta E > 0\)

$$\begin{aligned} \varSigma (k,\hbar \omega )&\approx \frac{ \left| V^{(3)}(\mathbf{k})\right| ^2}{4\pi \rho }\int _{0}^{Q} \frac{q \mathrm{{d}}q}{\sqrt{e_0(q)e_1(q)}}\text {sign}(e_0(q))\nonumber \\&= \frac{ \left| V^{(3)}(\mathbf{k})\right| ^2}{4\pi \rho }\sqrt{\frac{k}{2\varepsilon '_0|\varepsilon _0''|}} \left[ \int _{0}^{q_-} \frac{q \mathrm{{d}}q}{\sqrt{(q_-^2-q^2)(q^2+q_+^2)}}\right. \nonumber \\&\left. -\,\mathrm{i}\int _{q_-}^{Q} \frac{q \mathrm{{d}}q}{\sqrt{(q^2-q_-^2)(q^2+q_+^2)}}\right] \nonumber \\&\approx \frac{ \left| V^{(3)}(\mathbf{k})\right| ^2}{4\pi \rho }\sqrt{\frac{k}{2\varepsilon '_0|\varepsilon _0''|}}\left[ \frac{q_-}{q_+}-\mathrm{i}\ln 2Q+\frac{\mathrm{i}}{2} \ln (q_-^2+q_+^2)\right] \nonumber \\&\approx \frac{ \left| V^{(3)}(\mathbf{k})\right| ^2}{4\pi \rho }\sqrt{\frac{k}{2\varepsilon '_0|\varepsilon _0''|}}\mathrm{i}\ln (q_+) \end{aligned}$$
(33)

and for \(\Delta E<0\)

$$\begin{aligned} \varSigma (k,\hbar \omega )&\approx \frac{ \left| V^{(3)}(\mathbf{k})\right| ^2}{4\pi \rho }\int _{0}^{Q} \frac{q \mathrm{{d}}q}{\sqrt{e_0(q)e_1(q)}}\text {sign}(e_0(q))\nonumber \\&= \frac{ \left| V^{(3)}(\mathbf{k})\right| ^2}{4\pi \rho }\sqrt{\frac{k}{2\varepsilon '_0|\varepsilon _0''|}} \left[ -\int _{0}^{q_+} \frac{q \mathrm{{d}}q}{\sqrt{(q^2+q_-^2)(q_+^2-q^2)}}\right. \nonumber \\&\left. -\,\mathrm{i}\int _{q_+}^{Q} \frac{q \mathrm{{d}}q}{\sqrt{(q^2+q_-^2)(q^2-q_+^2)}}\right] \nonumber \\&\approx \frac{ \left| V^{(3)}(\mathbf{k})\right| ^2}{4\pi \rho }\sqrt{\frac{k}{2\varepsilon '_0|\varepsilon _0''|}}\left[ -\frac{\pi }{2}-\mathrm{i}\ln 2Q+\frac{\mathrm{i}}{2} \ln (q_-^2+q_+^2)\right] \nonumber \\&\approx \frac{ \left| V^{(3)}(\mathbf{k})\right| ^2}{4\pi \rho }\sqrt{\frac{k}{2\varepsilon '_0|\varepsilon _0''|}}\left[ -\frac{\pi }{2}+\mathrm{i}\ln (q_+)\right] . \end{aligned}$$
(34)

In this case the real part of the self-energy has a discontinuity whereas the imaginary part has a logarithmic singularity, and we can again combine

$$\begin{aligned} \varSigma (k,\hbar \omega )&\approx \frac{ \left| V^{(3)}(\mathbf{k})\right| ^2}{4\pi \rho }\sqrt{\frac{k}{2\varepsilon '_0|\varepsilon _0''|}}\left[ -\theta (-\Delta E)\frac{\pi }{2}+\mathrm{i}\ln (q_+)\right] \nonumber \\&= \frac{ \left| V^{(3)}(\mathbf{k})\right| ^2}{8\pi \rho }\sqrt{\frac{k}{2\varepsilon '_0\varepsilon _0''}} \ln \left( -\frac{\Delta E}{\varepsilon _0''}\right) . \end{aligned}$$
(35)

Hence Eq. (25) is valid for both \(\varepsilon _0''\) and \(\varepsilon _0''<0\).

Appendix 2: Three-Body Vertex

Normally, the three-body vertex (15) is calculated in convolution approximation. An improvement can be achieved by summing a set of three-body diagrams contributing to \(\tilde{X}_3({\mathbf {k}},{\mathbf {p}},{\mathbf {q}})\), which corresponds topologically to the hypernetted chain (HNC) summation. The first few diagrams are shown in Fig 7.

Fig. 7
figure 7

The figure shows the leading order diagrams contributing to the irreducible three-body vertex \(X_3({\mathbf {r}}_1,{\mathbf {r}}_2,{\mathbf {r}}_3)\). The usual diagrammatic conventions apply: circles correspond to particle coordinates, filled circles imply a density factor and integration over the associated coordinate space. Solid lines represent correlation factors \(h({\mathbf {r}}_i,{\mathbf {r}}_j)=g({\mathbf {r}}_i,{\mathbf {r}}_j)-1\) and the shaded triangle represents a three-body function \(u_3({\mathbf {r}}_1,{\mathbf {r}}_2,{\mathbf {r}}_3)\)

The equations to be solved are best written in momentum space and relative and center of mass momenta, i.e.,

$$\begin{aligned} \tilde{X}({\mathbf {p}}_1,{\mathbf {p}}_2,{\mathbf {p}}_3) \equiv \tilde{X}({\mathbf {q}}/2+{\mathbf {k}},{\mathbf {q}}/2-{\mathbf {k}},{\mathbf {q}})\equiv \tilde{X}_{{\mathbf {q}}}({\mathbf {k}}). \end{aligned}$$
(36)

The integral equation to be solved is

$$\begin{aligned} \tilde{X}_{{\mathbf {q}}}({\mathbf {k}})&= \int \frac{ \mathrm{d}^dp}{(2\pi )^d\rho } \tilde{h}({\mathbf {k}}-{\mathbf {p}})\tilde{N}_{{\mathbf {q}}}({\mathbf {p}})\nonumber \\ \tilde{N}_{{\mathbf {q}}}({\mathbf {k}})&= \tilde{N}^{(CA)}_{{\mathbf {q}}}({\mathbf {k}}) + \tilde{s}_{{\mathbf {q}}}({\mathbf {k}})\delta \tilde{X}_{{\mathbf {q}}}({\mathbf {k}}), \end{aligned}$$
(37)

where \(\tilde{N}_{{\mathbf {q}}}({\mathbf {k}})\) is the set of nodal diagrams, and

$$\begin{aligned} \tilde{N}^{(CA)}_{{\mathbf {q}}}({\mathbf {k}}) = \tilde{h}\left( \frac{{\mathbf {q}}}{2}+{\mathbf {k}}\right) \tilde{h}\left( \frac{{\mathbf {q}}}{2}-{\mathbf {k}}\right) + \tilde{u}_3\left( \frac{{\mathbf {q}}}{2}+{\mathbf {k}},\frac{{\mathbf {q}}}{2}-{\mathbf {k}},{\mathbf {q}}\right) \end{aligned}$$

is the convolution approximation for this quantity. Also, we have abbreviated

$$\begin{aligned} \tilde{s}_{{\mathbf {q}}}({\mathbf {k}}) = \left[ S(|{\mathbf {p}}+{\mathbf {q}}/2|)S(|{\mathbf {p}}-{\mathbf {q}}/2|)-1\right] . \end{aligned}$$
(38)

The equations can be easily solved by expanding all functions in terms of \(k\), \(q\), and the angle between the two vectors, e.g.,

$$\begin{aligned} \tilde{h}(|{\mathbf {k}}_1-{\mathbf {k}}_2|) =\sum \limits _{n=0}^\infty \tilde{h}_n(k_1,k_2) \cos (n\phi _{12}). \end{aligned}$$
(39)

This gives us the three-body vertex in the form

$$\begin{aligned} \tilde{X}_{{\mathbf {q}}}({\mathbf {p}}) = \sum \limits _m\cos ( m\phi ) X_m(q,p). \end{aligned}$$
(40)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krotscheck, E., Lichtenegger, T. Dynamic Many-Body Theory: Dynamic Structure Factor of Two-Dimensional Liquid \(^4\)He. J Low Temp Phys 178, 61–77 (2015). https://doi.org/10.1007/s10909-014-1221-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1221-6

Keywords

Navigation