Skip to main content
Log in

A Microkelvin Magnetic Flux Noise Thermometer

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Due to its non-driven nature, noise thermometry intrinsically is the method of choice when minimal heat input during the temperature measurement is required. Our noise thermometer, experimentally characterized for temperatures between 42 \({{\upmu }}\)K and 0.8 K, is a magnetic Johnson noise thermometer. The noise source is a cold-worked high purity copper cylinder, 5 mm in diameter and 20 mm long. The magnetic flux fluctuations generated by the electrons’ Brownian motion is measured inductively by two dc-SQUID magnetometers simultaneously. Cross-correlation of the two channels leads to reduction of parasitic noise by more than one order of magnitude which allows for measuring the tiny noise powers at microkelvin temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. XXF-1, Magnicon GmbH, Lemsahler Landstr. 17, Hamburg, Germany.

  2. Puratronic, Fe:0.009ppm, Alfa Aesar, 26 Parkridge Rd, Ward Hill, MA 01835, USA

  3. OP27, Analog Devices,Inc. , 3 Technology Way, Norwood, MA 02062, USA.

  4. ME-4610, Rev. 1.2D, Meilhaus Electronic GmbH, Puchheim, Germany.

  5. Thickfilm resistor, Vishay, type: RCWP-575.

  6. LR-700 AC resistance bridge, Linear Research INC., San Diego, CA, USA.

  7. PLM-4, RV-Elektroniikka, Vantaa, Finland.

References

  1. J.B. Johnson, Phys. Rev. 32, 97 (1928)

    Article  ADS  Google Scholar 

  2. H. Nyquist, Phys. Rev. 32, 110 (1928)

    Article  ADS  Google Scholar 

  3. A.W. Lawson, E.A. Long, Phys. Rev. 70, 220 (1946)

    Article  ADS  Google Scholar 

  4. J.B. Garrison, A.W. Lawson, Rev. Sci. Instrum. 20(11), 785 (1949)

    Article  ADS  Google Scholar 

  5. J.E.T. Patronis, H. Marshak, C.A. Reynolds, V.L. Sailor, F.J. Shore, Rev. Sci. Instrum. 30(7), 578 (1959)

    Article  ADS  Google Scholar 

  6. D.R. White, R. Galleano, A. Actis, H. Brixy, M. De Groot, J. Dubbeldam, A. Reesink, F. Edler, H. Sakurai, R. Shepard, J. Gallop, Metrologia 33(4), 325 (1996)

    Article  ADS  Google Scholar 

  7. G. Schuster, D. Hechtfischer, A. Hofifthann, AIP Conf. Proc. 684(1), 83 (2003)

    Article  ADS  Google Scholar 

  8. L. Spietz, R.J. Schoelkopf, P. Pari, Appl. Phys. Lett. 89(18), 183123 (2006)

    Article  ADS  Google Scholar 

  9. R. Webb, R. Giffard, J. Wheatley, J. Low Temp. Phys. 13, 383 (1973)

    Article  ADS  Google Scholar 

  10. C.P. Lusher, J. Li, V.A. Maidanov, M.E. Digby, H. Dyball, A. Casey, J. Nyeki, V.V. Dmitriev, B.P. Cowan, J. Saunders, Meas. Sci. Tech. 12(1), 1 (2001)

    Article  ADS  Google Scholar 

  11. A. Casey, B. Cowan, H. Dyball, J. Li, C. Lusher, V. Maidanov, J. Nyeki, J. Saunders, D. Shvarts, Physica B 329(2), 1556 (2003)

    Article  ADS  Google Scholar 

  12. D. Rothfuß, A. Reiser, A. Fleischmann, C. Enss, Appl. Phys. Lett. 103, 052605 (2013)

    Article  ADS  Google Scholar 

  13. T. Varpula, H. Seppä, Rev. Sci. Instrum. 64(6), 1593 (1993)

    Article  ADS  Google Scholar 

  14. A. Netsch, E. Hassinger, C. Enss, A. Fleischmann, AIP Conf. Proc. 850, 1593 (2005)

    Article  ADS  Google Scholar 

  15. J. Beyer, D. Drung, A. Kirste, J. Engert, A. Netsch, A. Fleischmann, C. Enss, IEEE Trans. Appl. Supercond. 17(2), 760 (2007)

    Article  ADS  Google Scholar 

  16. J. Engert, J. Beyer, D. Drung, A. Kirste, M. Peters, Int. J. Thermophys. 28, 1800 (2007)

    Article  ADS  Google Scholar 

  17. J. Engert, J. Beyer, D. Drung, A. Kirste, D. Heyer, A. Fleischmann, C. Enss, H.J. Barthelmess, J. Phys. Conf. Ser. 150(1), 012012 (2009)

    Article  ADS  Google Scholar 

  18. J.J. Brophy, M. Epstein, S.L. Webb, Rev. Sci. Instrum. 36(12), 1803 (1965)

    Article  ADS  Google Scholar 

  19. F.J. Shore, R.S. Williamson, Rev. Sci. Instrum. 37(6), 787 (1966)

    Article  ADS  Google Scholar 

  20. Y.A. Kraftmakher, A.G. Cherevko, Phys. Stat. Sol. A 14(1), 35 (1972)

    Article  ADS  Google Scholar 

  21. L. Callegaro, V. D’Elia, M. Pisani, A. Pollarolo, Metrologia 46(5), 409 (2009)

    Article  ADS  Google Scholar 

  22. J.W. Loram, T.E. Whall, P.J. Ford, Phys. Rev. B 2, 857 (1970)

    Article  ADS  Google Scholar 

  23. M. Khoshenevisan, W.P. Pratt, P.A. Schroeder, S.D. Steenwyk, Phys. Rev. B 19, 3873 (1979)

    Article  ADS  Google Scholar 

  24. H. Seppä, T. Varpula, J. Appl. Phys. 74(2), 771 (1993)

    Article  ADS  Google Scholar 

  25. D. Drung, C. Hinnrichs, H.J. Barthelmess, Supercond. Sci. Tech. 19(5), 235 (2006)

    Article  ADS  Google Scholar 

  26. D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, T. Schurig, IEEE Trans. Appl. Supercond. 17(2), 699 (2007)

    Article  ADS  Google Scholar 

  27. D.R. White, Metrologia 20(1), 1 (1984)

    Article  ADS  Google Scholar 

  28. D.R. White, Metrologia 29(1), 23 (1992)

    Article  ADS  Google Scholar 

  29. K. Gloos, P. Smeibidl, C. Kennedy, A. Singsaas, P. Sekowski, R.M. Mueller, F. Pobell, J. Low Temp. Phys. 73, 101 (1988)

    Article  ADS  Google Scholar 

  30. F. Pobell, J. Low Temp. Phys. 87, 635 (1992)

    Article  ADS  Google Scholar 

  31. R.J. Soulen, R.B. Dove, Nat. Bur. Stand. 260—-262, 47 (1979)

    Google Scholar 

  32. G. Eska, J. Low Temp. Phys. 73, 207 (1988)

    Article  ADS  Google Scholar 

  33. C. Buchal, J. Hanssen, R.M. Mueller, F. Pobell, Rev. Sci. Instrum. 49(9), 1360 (1978)

    Article  ADS  Google Scholar 

  34. P. Strehlow, J. Phys. Conf. Ser. 150(4), 042190 (2009)

    Article  ADS  Google Scholar 

  35. D. Hechtfischer, G. Schuster, AIP Conf. Proc. 684(1), 47 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Fruitful discussions with J. Beyer, J. Engert and S. Kempf are gratefully acknowledged. This work is supported by the European Community Research Infrastructures under the FP7 Capacities Specific Program, MICROKELVIN project number 228464.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Reiser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rothfuß, D., Reiser, A., Fleischmann, A. et al. A Microkelvin Magnetic Flux Noise Thermometer. J Low Temp Phys 175, 776–783 (2014). https://doi.org/10.1007/s10909-014-1146-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1146-0

Keywords

Navigation