Skip to main content
Log in

The Bayreuth nuclear demagnetization refrigerator

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The design, construction, and performance of a Cu nuclear refrigerator are reported. The first nuclear stage (total 275 moles Cu with 104 moles Cu in 8 T) has refrigerated a195Pt NMR thermometer in the low-field experimental region to 15 µK; it can keep experiments below 20 µK for more than 1 week. It can alternatively precool a second nuclear stage (2 moles Cu in 9 T). Demagnetizing this stage has resulted in a temperature of at most 12 µK as measured by another195Pt NMR thermometer attached to the stage. The details of the thermometry are described and possible origins of the observed internal heat leaks as well as unexpected contributions to the specific heat of the nuclear stages are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Kurti, F. N. Robinson, F. E. Simon, and D. A. Spohr,Nature 178, 450 (1956).

    Google Scholar 

  2. R. G. Gylling,Acta Polytech. Scand. Ph81 (1971); A. I. Ahonen, P. M. Berglund, M. T. Haikala, M. Krusius, O. V. Lounasmaa, and M. A. Paalanen,Cryogenics 16, 521 (1976); M. C. Veuro,Acta Polytech. Scand. Ph122 (1978).

  3. R. M. Mueller, C. Buchal, H. R. Folle, M. Kubota, and F. Pobell,Cryogenics 20, 395 (1980).

    Google Scholar 

  4. F. Pobell,Physica B + C 109/110, 1485 (1982).

    Google Scholar 

  5. H. Ishimoto, N. Nishida, T. Furabayashi, M. Sinohara, Y. Takano, Y. I. Miura, and K. Ono,J. Low Temp. Phys. 55, 17 (1984); and private communications.

    Google Scholar 

  6. D. I. Bradley, A. M. Guénault, V. Keith, C. J. Kennedy, I. E. Miller, S. G. Mussett, G. R. Pickett, and W. R. Pratt, Jr.,J. Low Temp. Phys. 57, 359 (1984).

    Google Scholar 

  7. G. Frossati, H. Godfrin, B. Hebral, G. Schuhmacher, and D. Thoulouze, inPhysics at Ultralow Temperatures, T. Sugawara, ed. (Physical Society of Japan, Tokyo, 1978, p. 205; G. Frossati,J. Phys. (Paris)39, C6-1578 (1978).

    Google Scholar 

  8. M. Schwark, F. Pobell, W. P. Halperin, C. Buchal, J. Hanssen, M. Kubota, and R. M. Mueller,J. Low Temp. Phys. 53, 685 (1983); M. Schwark, F. Pobell, M. Kubota, and R. M. Mueller,J. Low Temp. Phys. 58, 171 (1985).

    Google Scholar 

  9. A. C. Tims, R. L. Davidson, and R. W. Timme,Rev. Sci. Instr. 46, 554 (1975).

    Google Scholar 

  10. U. Angerer and G. Eska,Cryogenics 53, 515 (1984).

    Google Scholar 

  11. K. Gloos, P. Smeibidl, and F. Pobell, to be published.

  12. J. P. Pekola, J. T. Simola, and K. K. Numila, inProceedings of the 10th International Cryogenic Engineering Conference, H. Collan, P. Berglund, and M. Krusius, eds. (Butterworths, London, 1984), p. 259.

    Google Scholar 

  13. R. M. Mueller, C. Buchal, T. Oversluizen, and F. Pobell,Rev. Sci. Instr. 49, 515 (1978).

    Google Scholar 

  14. M. Jutzler, B. Schröder, K. Gloos, and F. Pobell,Z. Phys. B64, 115 (1986).

    Google Scholar 

  15. C. Buchal, J. Hanssen, R. M. Mueller, and F. Pobell,Rev. Sci. Instr. 49, 515 (1978).

    Google Scholar 

  16. G. Eska,J. Low Temp. Phys. 73, 207 (1988).

    Google Scholar 

  17. O. Avenel, P. Berglund, and E. Varoquaux, unpublished, quoted in ref. 18.

  18. D. O. Edwards, J. D. Feder, W. J. Gully, G. G. Ihas, J. Landau, and K. A. Muething, inPhysics at Ultralow Temperatures, T. Sugawara, ed. (Physical Society of Japan, 1978), p. 280.

  19. R. Ling, E. R. Dobbs, and J. Saunders,Phys. Rev. B33, 629 (1986).

    Google Scholar 

  20. W. A. Roshen and W. F. Saam,Phys. Rev. B22, 5495 (1980); and unpublished results.

    Google Scholar 

  21. J. Kästner, E. F. Wassermann, K. Matho, and J. L. Tholence,J. Phys. F8, 103 (1978).

    Google Scholar 

  22. M. T. Huiku, T. A. Jyrkkiö, J. M. Kyynäräinen, M. T. Loponen, O. V. Lounasmaa, and A. S. Oja,J. Low Temp. Phys. 62, 433 (1986).

    Google Scholar 

  23. P. Kumar, J. Kurkijärvi, and A. S. Oja,Phys. Rev. B33, 444 (1986).

    Google Scholar 

  24. R. P. Peters, Ch. Buchal, M. Kubota, R. M. Mueller, and F. Pobell,Phys. Rev. Lett. 53, 1108 (1984).

    Google Scholar 

  25. O. Echt, E. Recknagel, A. Weidinger, and Th. Wichert,Z. Phys. B32, 59 (1978).

    Google Scholar 

  26. A. Abragam,Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1983), p. 235.

    Google Scholar 

  27. O. Avenel and E. Varoquaux, private communication.

  28. G. J. Sellers and A. C. Andersson,Rev. Sci. Instr. 45, 1256 (1974); E. J. Cotts and A. C. Andersson,J. Low Temp. Phys. 43, 437 (1981).

    Google Scholar 

  29. D. S. Greywall,Phys. Rev. B18, 2127 (1978).

    Google Scholar 

  30. R. N. Kleiman, G. Agnolet, and D. J. Bishop,Phys. Rev. Lett. 59, 2079 (1987).

    Google Scholar 

  31. D. S. Osheroff and W. Sprenger, private communication.

  32. B. S. Neganov and V. N. Trofimov,JETP Lett. 28, 328 (1978); V. N. Trofimov,J. Low Temp. Phys. 54, 555 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gloos, K., Smeibidl, P., Kennedy, C. et al. The Bayreuth nuclear demagnetization refrigerator. J Low Temp Phys 73, 101–136 (1988). https://doi.org/10.1007/BF00681746

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00681746

Keywords

Navigation