Skip to main content
Log in

Instability of Nonequilibrium Superconducting State and the Proximity Effect in MoRe/Al Sandwiches

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The proximity effect in MoRe/Al sandwiches with different critical temperatures T c of MoRe films has been studied. The estimation of the proximity effect parameters has been made and their dependence on the Al thickness built. Features associated with instability of nonequilibrium superconducting state have been observed in the current-voltage characteristics of MoRe/Al–I–Pb tunnel junctions as a result of quasiparticle tunnel injection into the MoRe/Al sandwich. The estimation of the parameter of tunnel injection has been made and its impact on instabilities emergence studied. MoRe–I–Pb tunnel junctions have been produced and their current-voltage characteristics studied to be compared with the results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C.S. Owen, D.J. Scalapino, Phys. Rev. Lett. 28, 1559 (1972)

    Article  ADS  Google Scholar 

  2. W.H. Parker, Phys. Rev. B 12, 3667 (1975)

    Article  ADS  Google Scholar 

  3. V.F. Elesin, Yu.V. Kopaev, Sov. Phys. Usp. 24, 116 (1981)

    Article  ADS  Google Scholar 

  4. P. Verhoeve, N. Rando, A. Peacock, A. van Dordrecht, A. Poelaert, D.J. Goldie, R. Venn, J. Appl. Phys. 83, 6118 (1998)

    Article  ADS  Google Scholar 

  5. P.A.J. de Korte, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 444, 163 (2000)

    Article  ADS  Google Scholar 

  6. P. Lerch, A. Zehnder, in Cryogenic Particle Detection, ed. by Ch. Enss (Springer, Berlin, 2005), pp. 217–266

    Google Scholar 

  7. S. Friedrich, M.H. Carpenter, O.B. Drury, W.K. Warburton, J. Harris, J. Hall, R. Cantor, J. Low Temp. Phys. 167, 741 (2012)

    Article  ADS  Google Scholar 

  8. L.R. Testardi, J.J. Hauser, M.H. Read, Solid State Commun. 9, 1829 (1971)

    Article  ADS  Google Scholar 

  9. A.A. Golubov, E.P. Houwman, J.G. Gijsbertsen, V.M. Krasnov, J. Flokstra, H. Rogalla, M.Yu. Kupriyanov, Phys. Rev. B 51, 1073 (1995)

    Article  ADS  Google Scholar 

  10. J. Talvacchio, M.A. Janocko, J. Greggi, J. Low Temp. Phys. 64, 395 (1986)

    Article  ADS  Google Scholar 

  11. S.P. Chockalingam, M. Chand, J. Jesudasan, V. Tripathi, P. Raychaudhuri, Phys. Rev. B 77, 214503 (2008)

    Article  ADS  Google Scholar 

  12. C. Kittel, Introduction to Solid State Physics, 7th edn. (Wiley, New York, 1996), pp. 353, 150, 160

    Google Scholar 

  13. C.C. Chi, J. Clarke, Phys. Rev. B 20, 4465 (1979)

    Article  ADS  Google Scholar 

  14. E.M. Rudenko, D.S. Dubyna, A.A. Krakovny, J. Appl. Phys. 113, 173909 (2013)

    Article  ADS  Google Scholar 

  15. D. Movshovitz, N. Wiser, Phys. Rev. B 41, 10503 (1990)

    Article  ADS  Google Scholar 

  16. P. Liu, Ph.D. dissertation, Rice University, Houston, Texas, 1971

  17. R.C. Dynes, V. Narayanamurti, J.P. Garno, Phys. Rev. Lett. 39(4), 229 (1977)

    Article  ADS  Google Scholar 

  18. K.E. Gray, H.W. Willemsen, J. Low Temp. Phys. 31, 911 (1978)

    Article  ADS  Google Scholar 

  19. E.M. Rudenko, I.V. Korotash, A.A. Krakovny, D.S. Dubyna, D.A. Solomakha, D.S. Shchyptsov, J. Low Temp. Phys. 171, 779 (2013)

    Article  ADS  Google Scholar 

  20. G.P. Pepe, G. Peluso, R. Scaldaferri, A. Barone, L. Parlato, R. Latempa, A.A. Golubov, Phys. Rev. B 66, 174509 (2002)

    Article  ADS  Google Scholar 

  21. S.B. Kaplan, C.C. Chi, D.N. Langenberg, J.J. Chang, S. Jafarey, D.J. Scalapino, Phys. Rev. B 14, 4854 (1976)

    Article  ADS  Google Scholar 

  22. F.J. Morin, J.P. Maita, Phys. Rev. 129(3), 1115 (1963)

    Article  ADS  Google Scholar 

  23. G. Gladstone, M.A. Jensen, J.R. Schrieffer, in Superconductivity, vol. II, ed. by R.D. Parks (Dekker, New York, 1969), pp. 733–734

    Google Scholar 

  24. E. Lerner, J.G. Daunt, Phys. Rev. 153(2), 487 (1967)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Dubyna.

Appendix

Appendix

It is known from [22] that electronic specific heat coefficient for Mo0.5Re0.5 alloy γ =10.5×10−4 cal K−2 mol−1. The value of DOS at the Fermi energy N(0) for the Mo0.5Re0.5 alloy with the dimension of states eV−1 cm−3 will be determined, considering that [23]:

$$ N(0)=\frac{3\gamma^*}{2\pi^2k^2_B} , $$
(16)

where k B is the Boltzmann constant. At first, we find volume V occupied by one mole of the Mo0.5Re0.5 alloy, using the formula:

$$ \mathrm{V}=\frac{\mathit{Mr}}{\rho}, $$
(17)

where Mr is molecular mass and ρ—the density of MoRe alloy. The MoRe molecular mass will be equal to the sum of Mo and Re atomic masses: Mr(MoRe)=Ar(Mo)+Ar(Re)=96+186=282 g/mol, while ρ for Mo0.5Re0.5 compound is determined from the relation:

$$ \frac{1}{\rho}=\frac{x}{\rho(\mathrm{Mo})}+\frac{y}{\rho(\mathrm{Re})}, $$
(18)

where ρ(Mo)=10.28 g/cm3 and ρ(Re)=21.02 g/cm3 are densities, x and y—percent compositions in Mo x Re y compound of the Mo and Re, respectively. Then, the Mo0.5Re0.5 compound density will be equal to ρ(Mo0.5Re0.5)=13.8 g/cm3. Converting cal into eV, we could write the electronic specific heat coefficient as γ =1.34×1015 eV K−2 cm−3 and, using equation (16), find that the DOS for Mo0.5Re0.5 N(0)=2.75×1022 states eV−1 cm−3.

The value of coherence length for the Mo0.5Re0.5 \(\xi^{*}_{\mathrm{MoRe}}\) is found, using the Ginzburg-Landau (GL) expression for type-II superconductors:

$$ H_{c2}=\frac{{\varPhi_0}}{2\pi (\xi^*_\mathrm{MoRe} )^2} , $$
(19)

where H c2 is the upper critical field, Φ 0—the magnetic flux quantum. In [24], upper critical fields of the Mo0.52Re0.48 alloy for different T/T c ratios were found. Taking into account bath temperature T=4.2 K, the T/T c ratios for our films with critical temperatures T c =9.5 K and T c =6.5 K were 0.442 and 0.646, respectively. Then, the nearest similar values for upper critical fields of the Mo0.52Re0.48 alloy were H c2=1.28 T (T/T c =0.424) and H c2=0.61 T (T/T c =0.666) [24]. Substituting these values into (19), we obtain \(\xi^{*}_{\mathrm{MoRe(a)}}\approx16~\mathrm{nm}\) and \(\xi^{*}_{\mathrm{MoRe(b)}}\approx23~\mathrm{nm}\).

To check these values, let us calculate the GL coherence length \(\xi ^{*}_{\mathrm{MoRe}}\) through the ξ MoRe(0)—MoRe coherence length in the clean limit. It is known that for the dirty superconductor \(\xi^{*}_{\mathrm{MoRe}}\) relates to ξ MoRe(0) as:

$$ \xi^*_\mathrm{MoRe}=0.85\sqrt{\xi_\mathrm{MoRe}(0)l_\mathrm{MoRe}} , $$
(20)

where l MoRe is electron mean free path (mfp) in the MoRe film. At the same time, ξ MoRe(0) could be determined from the BCS theory:

$$ \xi_\mathrm{MoRe}(0)=\frac{\hbar v_F^{\mathrm{MoRe}}}{\pi{\varDelta_{\mathrm{MoRe}}}(0)}, $$
(21)

where \(v_{F}^{\mathrm{MoRe}}\) is electron velocity on the Fermi surface, Δ MoRe(0)—MoRe energy gap value at T=0 K, and ħ—Planck constant. mfp l MoRe could be expressed by the relations:

$$ \frac{1}{\rho_\mathrm{MoRe}^{20}}=e^2DN(0), $$
(22)

where e is elementary charge, D is diffusion coefficient, which is obtained as:

$$ D=\frac{1}{3}v_F^{\mathrm{MoRe}}l_\mathrm{MoRe}. $$
(23)

Thus, expression (20) could be re-written as:

$$ \xi^*_\mathrm{MoRe}=0.85\sqrt{\frac{3\hbar}{ e^2\pi\rho_\mathrm{MoRe}^{20}N(0){\varDelta_{\mathrm{MoRe}}}(0)}} . $$
(24)

As was shown in [10], MoRe, if its thickness is not less than 20 nm, is BCS superconductor with weak coupling, so energy gap Δ MoRe(0) could be found from the BCS theory:

$$ \varDelta_{\mathrm{MoRe}}(0)=\frac{3.52k_B T_c}{2} . $$
(25)

Then, from (25) the following values of the energy gaps were obtained: \(\varDelta_{\mathrm{MoRe(a)}}(0)\,{\approx} 1.44~\mbox{meV}\) and \(\varDelta_{\mathrm{MoRe(b)}}(0)\approx1~\mbox{meV}\) for the films with T c =9.5 K and T c =6.5 K, respectively. Substituting our values into (24), we obtain \(\xi^{*}_{\mathrm{MoRe(a)}}\approx17~\mathrm{nm}\) and \(\xi^{*}_{\mathrm{MoRe(b)}}\approx8~\mathrm{nm}\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubyna, D.S., Rudenko, E.M., Krakovny, A.A. et al. Instability of Nonequilibrium Superconducting State and the Proximity Effect in MoRe/Al Sandwiches. J Low Temp Phys 173, 327–342 (2013). https://doi.org/10.1007/s10909-013-0902-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-013-0902-x

Keywords

Navigation