Skip to main content
Log in

Incommensurate Filling of Ultracold Spin-1 Atoms in Optical Superlattice with a Weak Magnetic Field

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The ground states of ultracold spin-1 atoms trapped in an optical superlattice in a weak magnetic field with incommensurate filling of three atoms in one double-well are obtained. It is shown that the ground-state diagrams of the reduced double-well model are remarkably different for the antiferromagnetic and ferromagnetic atoms. These novel spin-states can be controlled easily and exactly by modulating the tunneling parameter and the quadratic Zeeman energy, which may be a tool for the study of spin-entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Sebby-Strabley, M. Anderlini, P.S. Jessen, J.V. Porto, Phys. Rev. A 73, 033605 (2006)

    Article  ADS  Google Scholar 

  2. M. Anderlini, J. Sebby-Strabley, J. Kruse, J.V. Porto, W.D. Phillips, J. Phys. B 39, S199 (2006)

    Article  ADS  Google Scholar 

  3. M. Anderlini, P.J. Lee, B.L. Brown, J. Sebby-Strabley, W.D. Phillips, J.V. Porto, Nature 448, 452 (2007)

    Article  ADS  Google Scholar 

  4. A.M. Rey, V. Gritsev, I. Bloch, E. Demler, M.D. Lukin, Phys. Rev. Lett. 99, 140601 (2007)

    Article  ADS  Google Scholar 

  5. J.-Q. Liang, J.-L. Liu, W.-D. Li, Z.-J. Li, Phys. Rev. A 79, 033617 (2009)

    Article  ADS  Google Scholar 

  6. A. Wagner, C. Bruder, E. Demler, Phys. Rev. A 84, 063636 (2011)

    Article  ADS  Google Scholar 

  7. S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A. Widera, T. Müller, I. Bloch, Nature 448, 1029 (2007)

    Article  ADS  Google Scholar 

  8. S. Trotzky, P. Cheinet, S. Fölling, M. Feld, U. Schnorrberger, A.M. Rey, A. Polkovnikov, E. Demler, M.D. Lukin, I. Bloch, Science 319, 295 (2008)

    Article  ADS  Google Scholar 

  9. M. Lewenstein, A. Sanpera, Science 319, 292 (2008)

    Article  Google Scholar 

  10. P. Cheinet, S. Trotzky, M. Feld, U. Schnorrberger, M. Moreno-Cardoner, S. Fölling, I. Bloch, Phys. Rev. Lett. 101, 090404 (2008)

    Article  ADS  Google Scholar 

  11. S. Trotzky, Y.-A. Chen, U. Schnorrberger, P. Cheinet, I. Bloch, Phys. Rev. Lett. 105, 265303 (2010)

    Article  ADS  Google Scholar 

  12. A. Wagner, A. Nunnenkamp, C. Bruder, Phys. Rev. A 86, 023624 (2012)

    Article  ADS  Google Scholar 

  13. D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Phys. Rev. Lett. 81, 3108 (1998)

    Article  ADS  Google Scholar 

  14. A. Imambekov, M. Lukin, E. Demler, Phys. Rev. A 68, 063602 (2003)

    Article  ADS  Google Scholar 

  15. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, London, 2002)

    Google Scholar 

  16. W. Zhang, S. Yi, L. You, New J. Phys. 5, 77 (2003)

    Article  ADS  Google Scholar 

  17. G.-P. Zheng, Y.-G. Tong, F.-L. Wang, Phys. Rev. A 81, 063633 (2010)

    Article  ADS  Google Scholar 

  18. F. Gerbier, A. Widera, S. Folling, O. Mandel, I. Bloch, Phys. Rev. A 73, 041602(R) (2006)

    Article  ADS  Google Scholar 

  19. S.R. Leslie, J. Guzman, M. Vengalattore, J.D. Sau, M.L. Cohen, D.M. Stamper-Kurn, Phys. Rev. A 79, 043631 (2009)

    Article  ADS  Google Scholar 

  20. M. Ueda, Annu. Rev. Condens. Matter Phys. 3, 263 (2012)

    Article  Google Scholar 

  21. T.-L. Ho, Phys. Rev. Lett. 81, 742 (1998)

    Article  ADS  Google Scholar 

  22. E. Demler, F. Zhou, Phys. Rev. Lett. 88, 163001 (2002)

    Article  ADS  Google Scholar 

  23. K. Murata, H. Saito, M. Ueda, Phys. Rev. A 75, 013607 (2007)

    Article  ADS  Google Scholar 

  24. M. Ueda, Y. Kawaguchi, e-print. arXiv:1001.2072 [cond-mat] (2010)

  25. S. Tsuchiya, S. Kurihara, T. Kimura, Phys. Rev. A 70, 043628 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Program of ISTTCPHP under Grant No. 114100510021, the NSBRPHPC under Grant No. 2011B140010, and the NSFC under Grants No. 11274095.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gong-Ping Zheng.

Appendix

Appendix

To find the intermediate states and corresponding transition matrix elements, it is necessary to know what they will be when the operators \(\hat{a}_{\pm1,0}^{\dagger}\) and \(\hat{a}_{\pm1,0}\) work on the spin states |S,S z ;n〉, which have been done in Ref. [25]. But they obtained the formulas only for S≤2. We have obtained those for S=3, which are needed in this paper, as follows,

$$ \hat{a}_{\pm1}^{\dagger}\vert 3,\pm3;n \rangle=\frac{2}{3} \sqrt{n+6}\vert 4,\pm4;n+1 \rangle, $$
$$ \hat{a}_{0}^{\dagger}\vert 3,\pm3;n \rangle=\frac {1}{3} \sqrt{n+6}\vert 4,\pm3;n+1 \rangle, $$
$$ \hat{a}_{\mp1}^{\dagger}\vert 3,\pm3;n \rangle=\frac{1}{3} \sqrt{\frac{n+6}{7}}\vert 4,\pm2;n+1 \rangle-\sqrt{\frac {3 ( n-1 ) }{7}}\vert 2,\pm2;n+1 \rangle, $$
$$ \hat{a}_{\pm1}^{\dagger}\vert 3,\pm2;n \rangle=\sqrt{ \frac {n+6}{3}}\vert 4,\pm3;n+1 \rangle, $$
$$ \hat{a}_{0}^{\dagger}\vert 3,\pm2;n \rangle=2\sqrt{ \frac {n+6}{21}}\vert 4,\pm2;n+1 \rangle+\sqrt{\frac{n-1}{7}}\vert 2,\pm 2;n+1 \rangle, $$
$$ \hat{a}_{\mp1}^{\dagger}\vert 3,\pm2;n \rangle=\sqrt{ \frac {n+6}{21}}\vert 4,\pm1;n+1 \rangle-\sqrt{\frac{2 ( n-1 ) }{7}}\vert 2, \pm1;n+1 \rangle, $$
$$ \hat{a}_{\pm1}^{\dagger}\vert 3,\pm1;n \rangle=\sqrt{ \frac {5 ( n+6 ) }{21}}\vert 4,\pm2;n+1 \rangle-\sqrt {\frac{n-1}{35}}\vert 2, \pm2;n+1 \rangle, $$
$$ \hat{a}_{0}^{\dagger}\vert 3,\pm1;n \rangle=\sqrt{ \frac {5 ( n+6 ) }{21}}\vert 4,\pm1;n+1 \rangle+2\sqrt{\frac {2 ( n-1 ) }{35}}\vert 2, \pm1;n+1 \rangle, $$
$$ \hat{a}_{\mp1}^{\dagger}\vert 3,\pm1;n \rangle=\sqrt{ \frac {2 ( n+6 ) }{21}}\vert 4,0;n+1 \rangle-2 \sqrt{\frac{6 ( n-1 ) }{35}}\vert 2,0;n+1 \rangle, $$
$$ \hat{a}_{\pm1}^{\dagger}\vert 3,0;n \rangle=\frac {1}{3}\sqrt{ \frac{10 ( n+6 ) }{7}}\vert 4,\pm1;n+1 \rangle -\sqrt{\frac{3 ( n-1 ) }{35}}\vert 2, \pm1;n+1 \rangle, $$
$$ \hat{a}_{0}^{\dagger}\vert 3,0;n \rangle=\frac{4}{3}\sqrt {\frac{n+6}{7}}\vert 4,0;n+1 \rangle+3\sqrt{\frac{n-1}{35}}\vert 2,0;n+1 \rangle, $$
$$ \hat{a}_{\pm1}\vert 3,\pm3;n \rangle=-\frac{1}{3}\sqrt { \frac{n-3}{7}}\vert 4,\pm2;n-1 \rangle+\sqrt{\frac{3 ( n+4 ) }{7}}\vert 2, \pm2;n-1 \rangle, $$
$$ \hat{a}_{0}\vert 3,\pm3;n \rangle=\frac{1}{3}\sqrt{n-3} \vert 4,\pm3;n-1 \rangle, $$
$$ \hat{a}_{\mp1}\vert 3,\pm3;n \rangle=-\frac{2}{3}\sqrt{n-3} \vert 4,\pm4;n-1 \rangle, $$
$$ \hat{a}_{\pm1}\vert 3,\pm2;n \rangle=-\sqrt{\frac{n-3}{21}} \vert 4,\pm1;n-1 \rangle+\sqrt{\frac{2 ( n+4 ) }{7}}\vert 2,\pm1;n-1 \rangle, $$
$$ \hat{a}_{0}\vert 3,\pm2;n \rangle=2\sqrt{\frac{n-3}{21}} \vert 4,\pm2;n-1 \rangle+\sqrt{\frac{n+4}{7}}\vert 2,\pm 2;n-1 \rangle, $$
$$ \hat{a}_{\mp1}\vert 3,\pm2;n \rangle=-\sqrt{\frac{n-3}{3}} \vert 4,\pm3;n-1 \rangle, $$
$$ \hat{a}_{\pm1}\vert 3,\pm1;n \rangle=-\sqrt{\frac{2 ( n-3 ) }{21}}\vert 4,0;n-1 \rangle+\sqrt{\frac{6 ( n+4 ) }{35}}\vert 2,0;n-1 \rangle, $$
$$ \hat{a}_{0}\vert 3,\pm1;n \rangle=\sqrt{\frac{5 ( n-3 ) }{21}}\vert 4, \pm1;n-1 \rangle+2\sqrt{\frac{2 ( n+4 )}{35}}\vert 2,\pm1;n-1 \rangle, $$
$$ \hat{a}_{\mp1}\vert 3,\pm1;n \rangle=-\sqrt{\frac{5 ( n-3 ) }{21}}\vert 4,\pm2;n-1 \rangle+\sqrt{\frac {n+4}{35}}\vert 2,\pm2;n-1 \rangle, $$
$$ \hat{a}_{\pm1}\vert 3,0;n \rangle=-\frac{1}{3}\sqrt{ \frac{10 ( n-3 ) }{7}}\vert 4,\mp1;n-1 \rangle+ \sqrt{\frac{3 ( n+4 ) }{35}}\vert 2, \mp1;n-1 \rangle, $$
$$ \hat{a}_{0}\vert 3,0;n \rangle=\frac{4}{3}\sqrt{ \frac {n-3}{7}}\vert 4,0;n-1 \rangle+3\sqrt{\frac{n+4}{35}} \vert 2,0;n-1 \rangle. $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, GP., Qin, SF., Jian, WT. et al. Incommensurate Filling of Ultracold Spin-1 Atoms in Optical Superlattice with a Weak Magnetic Field. J Low Temp Phys 172, 289–298 (2013). https://doi.org/10.1007/s10909-013-0870-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-013-0870-1

Keywords

Navigation