Skip to main content
Log in

Collective Modes in a Bilayer Dipolar Fermi Gas and the Dissipationless Drag Effect

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We consider the collective modes of a bilayer dipolar Fermi system in which the particles interact via long range (∼1/r 3) interaction. Assuming that each layer has a background flow which varies little and that the dynamics of the superfluid near T=0 is the same as that of a normal fluid, we obtain the dispersion relations for the collective modes in the presence of background flow. Decomposing the background flow into two parts, the center-of-mass flow and counterflow, we focus on the properties of the counterflow. We first find an estimate of the change in the zero-point energy ΔE ZP due to counterflow for a unit area of bilayer. Combining this with the free energy F of the system and taking the partial derivatives with respect to background velocities in the layers, we determine the current densities which reveal the fact that current in one layer does not only depend on the velocity in the same layer but also on the velocity of the other layer. This is the drag effect and we calculate the drag coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This approximation is often used in the context of correlations in electron liquids, see for instance [27].

References

  1. S. Ospelkaus, A. Pe’er, K.-K. Ni, J.J. Zirbel, B. Neyenhuis, S. Kotochigova, P.S. Julienne, J. Ye, D.S. Jin, Nat. Phys. 4, 622 (2008)

    Article  Google Scholar 

  2. M.A. Baranov, Phys. Rep. 464, 71 (2008)

    Article  ADS  Google Scholar 

  3. G.M. Bruun, E. Taylor, Phys. Rev. Lett. 101, 245301 (2008)

    Article  ADS  Google Scholar 

  4. G.E. Astrakharchik, J. Boronat, I.L. Kurbakov, Yu.E. Lozovik, Phys. Rev. Lett. 98, 060405 (2007)

    Article  ADS  Google Scholar 

  5. H.P. Büchler, E. Demler, M. Lukin, A. Micheli, N. Prokof’ev, G. Pupillo, P. Zoller, Phys. Rev. Lett. 98, 060404 (2007)

    Article  Google Scholar 

  6. N. Matveeva, S. Giorgini, arXiv:1206.3904

  7. Z.-K. Lu, G.V. Shlyapnikov, Phys. Rev. A 85, 023614 (2012)

    Article  ADS  Google Scholar 

  8. K.-K. Ni, S. Ospelkaus, M.H.G. de Miranda, A. Pe’er, B. Neyenhuis, J.J. Zirbel, S. Kotochigova, P.S. Julienne, D.S. Jin, J. Ye, Science 322, 231 (2008)

    Article  ADS  Google Scholar 

  9. C.-K. Chan, C. Wu, W.-C. Lee, S. Das Sarma, Phys. Rev. A 81, 023602 (2010)

    Article  ADS  Google Scholar 

  10. Q. Li, E.H. Hwang, S. Das Sarma, Phys. Rev. B 82, 235126 (2010)

    Article  ADS  Google Scholar 

  11. N.T. Zinner, G.M. Bruun, Eur. Phys. J. D 65, 133 (2011)

    Article  ADS  Google Scholar 

  12. A.G. Rojo, J. Phys. Condens. Matter 11, R31 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  13. R. Asgari, B. Tanatar, B. Davoudi, Phys. Rev. B 77, 115301 (2008)

    Article  ADS  Google Scholar 

  14. J.-M. Duan, Phys. Rev. Lett. 70, 3991 (1993)

    Article  ADS  Google Scholar 

  15. J.-M. Duan, S. Yip, Phys. Rev. Lett. 70, 3647 (1993)

    Article  ADS  Google Scholar 

  16. J.-M. Duan, Europhys. Lett. 29, 489 (1995)

    Article  ADS  Google Scholar 

  17. B. Tanatar, A.K. Das, Phys. Rev. B 54(13), 827 (1996)

    Google Scholar 

  18. S.I. Shevchenko, S.V. Terent’ev, J. Low Temp. Phys. 23, 817 (1997)

    Article  Google Scholar 

  19. D.V. Fil, S.I. Shevchenko, J. Low Temp. Phys. 30, 770 (2004)

    Article  Google Scholar 

  20. A.F. Andreev, E.P. Bashkin, Sov. Phys. JETP 42, 164 (1975)

    ADS  Google Scholar 

  21. M.A. Alpar, S.A. Langer, J.A. Sauls, Astrophys. J. 282, 533 (1984)

    Article  ADS  Google Scholar 

  22. N. Giordano, J.D. Monier, Phys. Rev. B 50, 9363 (1994)

    Article  ADS  Google Scholar 

  23. X. Huang, G. Bazàn, G.H. Bernstein, Phys. Rev. Lett. 74, 4051 (1995)

    Article  ADS  Google Scholar 

  24. L.A. Farina, K.M. Lewis, C. Kurdak, S. Ghosh, P. Bhattacharya, Phys. Rev. B 70, 153302 (2004)

    Article  ADS  Google Scholar 

  25. S. Ishino, H. Takeuchi, M. Tsubota, J. Low Temp. Phys. 162, 361 (2011)

    Article  ADS  Google Scholar 

  26. N. Matveeva, A. Recati, S. Stringari, Eur. Phys. J. D 65, 219 (2011)

    Article  ADS  Google Scholar 

  27. G.F. Giulliani, G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, Cambridge, 2005)

    Book  Google Scholar 

Download references

Acknowledgements

This work is supported by TUBITAK (Grant no. 109T267 and 209T059) and TUBA. We acknowledge useful discussions with S.H. Abedinpour.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Tanatar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanatar, B. Collective Modes in a Bilayer Dipolar Fermi Gas and the Dissipationless Drag Effect. J Low Temp Phys 171, 632–637 (2013). https://doi.org/10.1007/s10909-012-0823-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-012-0823-0

Keywords

Navigation